Patents Assigned to Board of Regents of the Nevada System of Higher Education on Behalf of the University of Nevada, Reno
  • Patent number: 8120224
    Abstract: A permanent-magnet switched-flux (PMSF) device has an outer rotor mounted to a shaft about a central axis extending axially through the PMSF device. First and second pluralities of permanent-magnets (PMs) are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the outer rotor. An inner stator is coupled to the shaft and has i) a stator core having a core axis co-axial with the central axis; and ii) first and second pluralities of stator poles mounted in first and second circles, radially outwardly from the stator core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: February 21, 2012
    Assignee: Board of Regents of the Nevada System of Higher Education, on behalf of the University of Nevada, Reno
    Inventors: Andrzej M. Trzynadlowski, Ling Qin
  • Patent number: 8110526
    Abstract: In various embodiments, the present disclosure provides filtering compositions, their method of production, and methods for their use. In specific implementations, the filtering composition includes lanthanum and has a surface area of at least about 125 g/m 2. In more specific examples, the filtering composition is free-flowing or has a moisture content between about 10 wt % about 30 wt %. Particular compositions include at least one of iron or magnesium. Some embodiments of the present disclosure provide filtering compositions that are resilient or leach-resistant.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: February 7, 2012
    Assignee: The Board of Regents of the Nevada System of Higher Education, on Behalf of the University of Nevada, Reno
    Inventors: Manoranjan Misra, Joseph Nanor
  • Patent number: 8065037
    Abstract: A control method and system for controlling a hydraulically actuated mechanical arm to perform a task, the mechanical arm optionally being a hydraulically actuated excavator arm. The method can include determining a dynamic model of the motion of the hydraulic arm for each hydraulic arm link by relating the input signal vector for each respective link to the output signal vector for the same link. Also the method can include determining an error signal for each link as the weighted sum of the differences between a measured position and a reference position and between the time derivatives of the measured position and the time derivatives of the reference position for each respective link. The weights used in the determination of the error signal can be determined from the constant coefficients of the dynamic model. The error signal can be applied in a closed negative feedback control loop to diminish or eliminate the error signal for each respective link.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: November 22, 2011
    Assignee: Board of Regents of the Nevada System of Higher Education, on Behalf of the University of Nevada, Reno
    Inventor: George Danko
  • Patent number: 8031926
    Abstract: Locations of the origins of “discrete events,” e.g., photons or other units of radiant energy are acquired from a specimen with reference to a scan frame or other region of interest of the specimen. The location of origin of a discrete event can be determined from the corresponding location datum as derived from a scan-drive signal, a positional feed-back signal, or by a point in time during a unit of sampling time (“image-acquisition period”) at which the event is detected. A probability-density function (PDF) is associated with the detected locations. Summing or other processing of the PDFs is performed to produce imagable data. From the data, images can be produced that require fewer discrete events to converge to an ideal density distribution associated with an image feature than required by pixel-based binning methods. Stored data can be mapped into pixels or voxels of a display or otherwise processed, including post hoc processing.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: October 4, 2011
    Assignee: Board of Regents of the Nevada System of Higher Education, on behalf of the University of Nevada, Reno
    Inventors: John L. Sutko, Nelson George Publicover, Joshua David Larkin
  • Patent number: 8029671
    Abstract: In some embodiments, systems and methods are provided for purifying a liquid, such as an impaired water. In some examples, seawater or brackish water is purified, such as to a potable level. Some configurations provide a system which includes a membrane-distillation unit, such as a vacuum-enhanced direct contact membrane distillation unit. The system also includes a forward-osmosis system, which may include one or more forward-osmosis units. A concentrated draw stream from the membrane-distillation unit, such as a concentrated brine solution, serves as a draw solution for a forward-osmosis unit, which may extract water from a source water, such as an impaired water. In some implementations, the forward-osmosis system includes a second forward-osmosis unit which uses the diluted draw solution from the first forward-osmosis unit as a draw solution to extract water from a source water. The system may include additional components, such as a heater or a buffer tank.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: October 4, 2011
    Assignee: Board of Regents of the Nevada System of Higher Education, on Behalf of the University of Nevada, Reno
    Inventors: Tzahi Y. Cath, Amy E. Childress, Christopher R. Martinetti
  • Patent number: 7998568
    Abstract: The invention relates to a bioceramic coated apparatus and method of forming the same. The apparatus may be a medical implant such as, for example, an orthopedic implant or a dental implant. The bioceramic coating is designed to increase tissue and/or bone growth upon implantation of the apparatus. The apparatus has a valve metal substrate having a nanoporous valve metal oxide surface layer. The nanoporous surface layer contains a plurality of nanopores. The nanopores have adsorbed phosphate ions on at least their interior surfaces. A bioceramic coating is formed on the nanoporous surface and anchored into the nanopores. Optionally, the nanopores are formed into a tapered shape in order to increase adhesion to the bioceramic coating.
    Type: Grant
    Filed: June 27, 2005
    Date of Patent: August 16, 2011
    Assignee: Board of Regents of the Nevada System of Higher Education, on Behalf of the University of Nevada, Reno
    Inventors: Krishnan Selva Raja, Manoranjan Misra, Archana Kar
  • Patent number: 7964722
    Abstract: Compounds of Formula (1) are disclosed. Cb is a carbocyclic or heterocyclic group having an atom within the cyclic structure selected from C, N, Si, and Cr and singly bound to A. A is CR, COR, CSR, CNR2, CCN, CCONR2, CNO2, CNNAr, CX1, or N. Cr is a chromophore having a substantially planar cyclic structure. The compounds function as nanometer-scale rotary molecular motors powered and controlled by light energy. The design of the molecular motor devices is flexible so that the rotary direction, drive light wavelength, and other physical characteristics can be varied. The compounds can be chemically functionalized to allow it to be integrated into or attached to a variety of structures. The device can be used in applications where mechanical power, positional control, and information encoding are to be generated at the size scale of individual molecules.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: June 21, 2011
    Assignee: Board of Regents of the Nevada System of Higher Education, on behalf of the University of Nevada, Reno
    Inventors: Thomas W. Bell, Joseph I. Cline, Christine R. Cremo, Stephen L. Gillett, John H. Frederick
  • Patent number: 7943208
    Abstract: The invention provides materials and methods for making anisotropic solids which may be in the form of films, layers, shaped elements, and other shaped articles. The methods provide anisotropic solids without the need for rolling, rubbing, or stretching to impart orientational alignment of the molecules of the solid. The methods employ organic or organometallic compounds which are soluble orienting molecules. The solvent or solvent system must be sufficiently volatile to be removed without disruption of the molecular orientation. The soluble orienting molecules include those containing one or more hydrophilic and/or ionic groups and the solvent or solvent system can be a polar organic solvent or solvent system or an aqueous solvent or solvent system. The invention also provides novel compounds having quaterrylene, perylene and naphthalene ring systems carrying one or more hydrophilic and/or ionic groups.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: May 17, 2011
    Assignee: Board of Regents of the Nevada System of Higher Education, on behalf of the University of Nevada, Reno
    Inventors: Travis D. Carson, Sean M. Casey, Isaac K. Iverson, Wonewoo Seo, Suk-Wah Tam-Chang
  • Patent number: 7914680
    Abstract: The present disclosure provides methods and systems for purifying liquids. In a particular implementation, the system includes a forward-osmosis unit for diluting a water source for a downstream desalination unit. A pretreatment unit may be located hydraulically upstream of the desalination unit, such as upstream or downstream of the forward-osmosis unit. In certain embodiments, the system includes an extraction unit for extracting a relatively easily extractable osmotic agent from an osmotic draw solution. The system may include one or more forward-osmosis units downstream of the desalination unit for diluting a concentrated brine stream produced by the desalination unit. In particular embodiments, a downstream forward-osmosis unit uses the concentrated brine stream as an osmotic agent, such as to extract water from seawater or brackish water. Another downstream forward-osmosis unit may use impaired water as a feed stream.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: March 29, 2011
    Assignee: Board of Regents of the Nevada System of Higher Education, on behalf of the University of Nevada, Reno
    Inventors: Tzahi Y. Cath, Amy E. Childress
  • Patent number: 7883636
    Abstract: Magnetorheological materials having a supramolecular polymer gel as a component of the carrier are disclosed. Useful supramolecular polymers for gels include those having bipyridine or terpyridine ligands which can participate in metal coordination bonding. The magnetizable particles of magnetorheological materials can have supramolecular surfactant-polymer coatings.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: February 8, 2011
    Assignee: Board of Regents of the Nevada System of Higher Education, on Behalf of the University of Nevada, Reno
    Inventors: Alan Fuchs, Faramarz Gordaninejad, Hatice Gecol, Ben Hu, Beril Kavlicoglu, Joko Sutrisno
  • Patent number: 7698930
    Abstract: Methods and apparatus are disclosed for characterizing flow of magneto-rheological suspensions through microchannels. The apparatus includes a pump for pumping a the magneto-rheological suspension; a microchannel hydraulically coupled to the pump and configured to receive the magneto-rheological suspension from the pump; a manifold hydraulically coupled between an outlet of the microchannel and the pump; a static pressure tap configured to convey a static pressure of the manifold; a pressure sensor hydraulically coupled to the pressure tap and configured to receive the static pressure conveyed therefrom; and a magnet positioned to direct a magnetic field toward the microchannel and contents disposed therein.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: April 20, 2010
    Assignee: Board of Regents of the Nevada System of Higher Education on behalf of the University of Nevada, Reno
    Inventors: Faramarz Gordaninejad, Joseph L. Whiteley
  • Patent number: 7646126
    Abstract: A permanent-magnet switched-flux (PMSF) device has a ferromagnetic outer stator mounted to a shaft about a central axis extending axially through the PMSF device. Pluralities of top and bottom stator poles are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the ferromagnetic outer stator. A ferromagnetic inner rotor is coupled to the shaft and has i) a rotor core having a core axis co-axial with the central axis; and ii) first and second discs having respective outer edges with first and second pluralities of permanent magnets (PMs) mounted in first and second circles, radially outwardly from the rotor core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: January 12, 2010
    Assignee: Board of Regents of the Nevada System of Higher Education on Behalf of the University of Nevada, Reno
    Inventors: Andrzej M. Trzynadlowski, Ling Qin
  • Patent number: 7625497
    Abstract: The invention provides materials and methods for making anisotropic solids which may be in the form of films, layers, shaped elements, and other shaped articles. The methods provide anisotropic solids without the need for rolling, rubbing, or stretching to impart orientational alignment of the molecules of the solid. The methods employ organic or organometallic compounds which are soluble orienting molecules. The solvent or solvent system must be sufficiently volatile to be removed without disruption of the molecular orientation. The soluble orienting molecules include those containing one or more hydrophilic and/or ionic groups and the solvent or solvent system can be a polar organic solvent or solvent system or an aqueous solvent or solvent system. The invention also provides novel compounds having quaterrylene, perylene and naphthalene ring systems carrying one or more hydrophilic and/or ionic groups.
    Type: Grant
    Filed: November 22, 2004
    Date of Patent: December 1, 2009
    Assignee: Board of Regents of the Nevada System of Higher Education on Behalf of the University of Nevada, Reno
    Inventors: Isaac K. Iverson, Suk-Wah Tam-Chang
  • Patent number: 7521257
    Abstract: The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: April 21, 2009
    Assignee: The Board of Regents of the Nevada System of Higher Education on Behalf of the University of Nevada, Reno
    Inventors: Jesse D. Adams, Benjamin S. Rogers
  • Patent number: 7504985
    Abstract: Radar systems are disclosed that include a signal generator, an antenna, a switching circuit, an I/Q sampling and signal-demodulation (demodulation) processor, and a FFT processor. The signal generator produces energization signals. The antenna has multiple individual antenna elements. The switching circuit is configured to deliver the energization signals to a selected antenna element at a respective moment in time to cause the selected antenna element to transmit a respective radar signal in response to the energization signal. At least one element receives a corresponding return-radar signal before the switching circuit selects a next antenna element to transmit a respective radar signal. The demodulation processor receives the return-radar signals from the antenna elements and demodulates the return-radar signals. The FFT processor fast-Fourier transforms the return-radar signals.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: March 17, 2009
    Assignee: Board of Regents of the Nevada System of Higher Education on Behalf of the University of Nevada, Reno
    Inventors: James M. Henson, Ross P. Kohlmoos
  • Patent number: 7445718
    Abstract: A method of removing arsenic and heavy metals from water using metal salt hydroxidegels is provided. The arsenic present in water is adsorbed onto the hydroxide-gels which can effectively be filtered through a diatomaceous earth (DE) filtration bed. The combination of DE mixed hydroxide-gels is also effective in removing arsenic from water and heavy metals from water.
    Type: Grant
    Filed: April 10, 2003
    Date of Patent: November 4, 2008
    Assignees: The Board of Regents of the Nevada Systems of Higher Education on behalf of the University of Nevada, Reno, EP Minerals, LLC
    Inventors: Manoranjan Misra, Peter Lenz
  • Patent number: 7385330
    Abstract: A permanent-magnet switched-flux (PMSF) apparatus comprises a plurality of permanent-magnet switched-flux (PMSF) devices, wherein each of the plurality of PMSF devices comprises a ferromagnetic outer rotor coupled to a shaft, wherein the ferromagnetic outer rotor comprises a plurality of permanent-magnets coupled to an inner surface of the ferromagnetic outer rotor, an inner stator rotatably disposed in the ferromagnetic outer rotor, wherein the inner stator comprises a stator core and multiple serrated edges forming multiple stator poles distal from the stator core, wherein the multiple stator poles are configured to interface with the plurality of permanent-magnets, and a coil disposed on the stator core between the multiple stator poles, wherein the coil is coupled to the plurality of permanent-magnets, wherein a magnetic flux of the plurality of permanent-magnets is operable to pass through the coil, and wherein the magnetic flux is configured to switch to an opposite direction in response to a rotation o
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: June 10, 2008
    Assignee: Board of Regents of the Nevada System of Higher Education on Behalf of the University of Nevada, Reno
    Inventors: Andrzej M. Trzynadlowski, Ling Qin