Patents Assigned to Board of Regents The University of Texas System
  • Patent number: 11801295
    Abstract: Immunogenic compositions comprising viral vectors and surfactants are provided. Methods for administration and preparation of such compositions are also provided.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: October 31, 2023
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Maria A. Croyle, Stephen Clay Schafer
  • Patent number: 11801218
    Abstract: Vaccine compositions that may be administered to a subject via the buccal and/or sublingual mucosa are provided. Methods for administration and preparation of such vaccine compositions are also provided.
    Type: Grant
    Filed: October 15, 2021
    Date of Patent: October 31, 2023
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Maria A. Croyle, Jin Huk Choi, Stephen Clay Schafer
  • Publication number: 20230342524
    Abstract: Systems and methods for simulating subterranean regions having fracture geometries. Non-intrusive embedded discrete fracture modeling formulations are applied to two-dimensional and three-dimensional unstructured grids, with mixed elements, using an element-based finite-volume method in conjunction with commercial simulators to model subsurface characteristics in regions having complex hydraulic fractures, complex natural fractures, or a combination of both.
    Type: Application
    Filed: May 23, 2023
    Publication date: October 26, 2023
    Applicants: Sim Tech LLC, Board of Regents, The University of Texas System
    Inventors: Kamy Sepehrnoori, Yifei Xu, Wei Yu, Francisco Marcondes, Jijun Miao
  • Publication number: 20230338485
    Abstract: Embodiments of the present disclosure pertain to methods of treating or preventing a cancer in a subject by administering to the subject an immunogenic peptide and/or a nucleotide sequence that expresses the immunogenic peptide. Thereafter, the administered or expressed immunogenic peptide elicits an immune response against cells associated with the cancer. The immunogenic peptides contain a neoantigenic region and are expressed by chimeric nucleotide sequences derived from cells associated with the cancer. The chimeric nucleotide sequences have a higher prevalence in cancer cells when compared to non-cancer cells. Further embodiments pertain to compositions that include the immunogenic peptides of the present disclosure and/or a nucleotide sequences that express them.
    Type: Application
    Filed: September 23, 2021
    Publication date: October 26, 2023
    Applicants: UNIVERSITY OF HOUSTON SYSTEM, BOARD OF REGENTS OF THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Preethi Gunaratne, Brandon Mistretta, Sakuni Rankothgedera, Micah Castillo, Isabelle Bedrosian
  • Patent number: 11795457
    Abstract: Described are compounds and methods useful for the treatment and investigation of Friedreich's Ataxia.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: October 24, 2023
    Assignee: The Board of Regents of The University of Texas System
    Inventors: David Corey, Liande Li
  • Patent number: 11794040
    Abstract: Apparatuses and methods for generating therapeutic shock waves. Some embodiments comprise: an acoustic-wave generator configured to emit acoustic waves having at least one frequency between 1 MHz and 1000 MHz; a shock wave housing coupled to the acoustic-wave generator; and a shock wave medium disposed in the shock wave housing; where the apparatus is configured such that if the acoustic-wave generator emits acoustic waves then at least some portion of the acoustic waves will travel through the shock wave medium and form one or more shock waves.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: October 24, 2023
    Assignee: The Board of Regents of the University of Texas System
    Inventor: Christopher C. Capelli
  • Patent number: 11795512
    Abstract: The present disclosure provides methods and compositions for the detection of bladder in a subject using four locus-specific probes to 6p22, 8q22, 11q13, and 20p11.2.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: October 24, 2023
    Assignee: Board of Regents, The University of Texas System
    Inventors: Bogdan Czerniak, Keith Baggerly, Jolanta Bondaruk, Tadeusz Majewski, Colin Dinney, Shizhen Zhang, Yan Wang
  • Patent number: 11794175
    Abstract: A metal-free porphyrin based crystalline 2D organic polymer obtained from the condensation of terephthaloyl chloride and 5,10,15,20-tetrakis(4-aminophenyl porphyrin, namely H2TAPP), which is an effective bifunctional electrocatalyst for the oxygen evolution reaction (OER) in basic conditions and the hydrogen evolution reaction (HER) in neutral solutions. The electrochemical response of this material is explored under oxidation and reduction conditions in order to study its catalytic activity, charge transfer and stability.
    Type: Grant
    Filed: February 23, 2021
    Date of Patent: October 24, 2023
    Assignee: Board of Regents, The University of Texas System
    Inventors: Dino Villagran, Yulu Ge
  • Patent number: 11793439
    Abstract: Epidermal electronics are non-invasive and non-obstructive skin mounted sensors with mechanical properties matching human epidermis. Their manufacturing process includes photolithography and dry and wet etching within cleanroom facilities. The high cost of manpower, materials, photo masks, and facilities greatly hinders the commercialization potential of disposable epidermal electronics. In contrast, an embodiment of the invention includes a low cost, high throughput, bench top “cut-and-paste” method to complete the freeform manufacture of epidermal sensor system (ESS) in minutes. This versatile method works for many types of thin metal and polymeric sheets and is compatible with many tattoo adhesives or medical tapes. The resultant ESS is highly multimaterial and multifunctional and may measure ECG, EMG, skin temperature, skin hydration, as well as respiratory rate.
    Type: Grant
    Filed: April 26, 2022
    Date of Patent: October 24, 2023
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Nanshu Lu, Shixuan Yang, Pulin Wang
  • Patent number: 11787839
    Abstract: The present disclosure provides ?2?-1 C-terminal domain mimetics for the treatment of pain, epilepsy or other disorders in a subject. Further provided is an ?2?-1 C-terminal domain peptide which blocks binding of ?2?-1 to the glutamate receptors NMDAR and AMPAR.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: October 17, 2023
    Assignee: Board of Regents, The University of Texas System
    Inventor: Hui-lin Pan
  • Patent number: 11786170
    Abstract: Nanomaterial epidermal sensors can be adhered to the skin and worn comfortably and inconspicuously for days to allow for repeated biometric sensing. The nanomaterial epidermal sensors may be comprised of a monolayer of graphene coating a flexible polymer substrate. Various nanomaterial epidermal sensors may be quickly fabricated using a cost-efficient “cut-and-paste” method on transfer paper and can be adhered directly to skin without tape or adhesive, much like a temporary-tattoo. The nanomaterial epidermal sensors may be optically transparent and may be used to measure an electrocardiogram (ECG), an electroencephalogram (EEG) or an electromyogram (EMG) with a signal-to-noise ratio that is comparable to conventional electrodes. In addition, the nanomaterial epidermal sensors may be used to measure other parameters, such as skin temperature or skin hydration.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: October 17, 2023
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Nanshu Lu, Deji Akinwande, Shideh Kabiri Ameri Abootorabi
  • Patent number: 11791867
    Abstract: A disclosed transmitter for wireless communication includes multiple transmitting antennas, a symbol mapper for mapping an input block including multiple binary bits and representing information to be transmitted to a symbol representing an ordered plurality of complex numbers, a space-time encoder for applying an encoding operator to the symbol to produce a vectorized space-time codeword defining electrical signals to be transmitted by the transmitter, the encoding operator being dependent on a set of predefined stabilizer generators, and circuitry to collectively transmit, by the antennas to multiple receiving antennas of a receiver over a wireless transmission channel, the electrical signals defined by the vectorized space-time codeword. The receiver includes a space-time decoder for recovering the symbol from the electrical signals transmitted by the transmitter using a decoding operation that is based on maximum likelihood inference, and a symbol de-mapper for recovering the input block from the symbol.
    Type: Grant
    Filed: December 29, 2021
    Date of Patent: October 17, 2023
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: S. Andrew Lanham, Travis Cuvelier, Brian R. La Cour, Robert Heath
  • Patent number: 11786464
    Abstract: Described herein are therapeutic pH responsive compositions comprising a block copolymer and a therapeutic agent useful for the treatment of cancer.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: October 17, 2023
    Assignee: The Board of Regents of The University of Texas System
    Inventors: Jinming Gao, Tongyi Huang, Qiang Feng, Baran Sumer
  • Patent number: 11786582
    Abstract: The present invention concerns methods and compositions for immunotherapy employing a modified T cell comprising a chimeric antigen receptor (CAR). In particular aspects, CAR-expressing T-cells are producing using electroporation in conjunction with a transposon-based integration system to produce a population of CAR-expressing cells that require minimal ex vivo expansion or that can be directly administered to patients for disease (e.g., cancer) treatment.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: October 17, 2023
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Laurence J N Cooper, Hiroki Torikai, Ling Zhang, Helen Huls, Feng Wang-Johanning, Lenka Hurton, Simon Olivares, Janani Krishnamurthy
  • Patent number: 11786500
    Abstract: Disclosed herein are methods of treating a tumor or cancer in a subject whose tumor or cancer cells express low levels of asparagine synthetase (ASNS), and compounds and compositions useful in such treatment. Also disclosed herein are methods of evaluating whether to administer a compound that inhibits glutathione production or a glutaminase inhibitor to a subject with a tumor or cancer.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: October 17, 2023
    Assignee: Board of Regents, The University of Texas System
    Inventors: Timothy Heffernan, Jeffrey Kovacs, Nakia Spencer, Christopher Bristow
  • Publication number: 20230320709
    Abstract: Devices and methods for extraction and processing of substantia gelatinea funiculi umbilicalis (Wharton's Jelly) from an umbilical cord.
    Type: Application
    Filed: June 10, 2023
    Publication date: October 12, 2023
    Applicant: BOARD OF REGENTS OF THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Charles S. COX, JR., Brijesh S. GILL, Kevin AROOM, Tushar SHARMA
  • Patent number: 11780879
    Abstract: In fibrotic lung fibroblasts, basal levels of p53 protein (and miR-34a) are markedly suppressed, leading to reduced p53-mediated inhibition of uPA and uPAR, or concurrent induction of PAI-1. These changes contribute to excessive FL-fibroblast proliferation and production of extracellular matrix (ECM), and, therefore, pulmonary fibrosis. These processes are reversed by treating the cells, and treating subjects suffering from idiopathic pulmonary fibrosis (IPF) with the small organic molecule nutlin-3a (NTL) or with a peptide, CSP-4 (SEQ ID NO:1), or variants or derivatives or multimers of this peptide, which increase p53 levels by inhibiting MDM2-mediated degradation of p53 protein. Use of these compounds serves as a new approach to the treatment of IPF, as they restore p53 expression and p53-mediated changes in the uPA-fibrinolytic system in FL-fibroblasts and restrict production and deposition of ECM.
    Type: Grant
    Filed: October 12, 2021
    Date of Patent: October 10, 2023
    Assignee: Board of Regents, the University of Texas System
    Inventors: Sreerama Shetty, Steven Idell
  • Patent number: 11780154
    Abstract: A method of ink-extrusion printing an object, including providing a mixture including liquid crystal monomers and photo-catalyzing or heating the mixture to produce a liquid crystal ink. The ink is in a nematic phase. The method includes extruding the ink through a print-head orifice moving along a print direction to form an extruded film of the object. The extruded film exhibits birefringence. Also disclosed are a liquid crystal ink. The ink includes a mixture including liquid crystal monomers. The mixture when at a target printing temperature is in a nematic phase. Also disclosed is ink-extrusion-printed object. The object includes an extrusion-printed film including a nematic liquid crystal elastomer, wherein the film exhibits birefringence along an extrusion axis of the film.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: October 10, 2023
    Assignees: University of Pittsburgh—Of the Commonwealth System of Higher Education, Board of Regents, The University of Texas System
    Inventors: Taylor H. Ware, Cedric P. Ambulo, Mohand O. Saed, Jennifer M. Boothby, Julia J. Henricks, Ravi Shankar Meenakshisundaram
  • Patent number: 11782055
    Abstract: Disclosed herein are devices, apparatus, systems, methods and kits for performing immunoassay tests on a sample. The A sensing apparatus is provided for detecting a plurality of different target analytes in a sample. The apparatus may comprise an array of sensing devices provided on a substrate, each sensing device in the array comprising a working electrode having (1) semiconducting nanostructures disposed thereon and (2) a capture reagent coupled to the semiconducting nanostructures that selectively binds to a different target analyte in the sample. The apparatus may also comprise sensing circuitry that (1) simultaneously detects changes to electron and ion mobility and charge accumulation in the array of sensing devices when the capture reagents in the array of sensing devices selectively bind to the plurality of different target analytes, and (2) determines the presence and concentrations of the plurality of different target analytes in the sample based on the detected changes.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: October 10, 2023
    Assignees: EnLiSense, LLC, Board of Regents, The University of Texas System
    Inventors: Sriram Muthukumar, Shalini Prasad
  • Patent number: 11779927
    Abstract: A method of moving a solvent without electrowetting properties on an electro-wetting-on-dielectric (EWOD) microfluidic device comprises disposing a first droplet of a first fluid having electrowetting properties on a surface of the EWOD microfluidic device; disposing a second droplet of a second fluid without electrowetting properties on the surface; applying a voltage to the surface to move the first droplet towards the second droplet; contacting the first droplet with the second droplet to form a encapsulated droplet, where the second droplet encapsulates the first droplet.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: October 10, 2023
    Assignee: Board of Regents, The University of Texas System
    Inventors: Hyejin Moon, Matin Torabinia