Patents Assigned to BOEHLER SCHMIEDETECHNIK GMBH & CO KG
  • Patent number: 9440283
    Abstract: A process for hot shaping a workpiece of metal or an intermetallic compound at a temperature of higher than about 1000° C. The method comprises at least partially coating the surface of the workpiece with a coating agent that comprises an oxide phase and an additive and/or an adhesive before processing the workpiece into a formed body or a rolling product. A coating agent for reducing the heat emission from the workpiece comprises a predominant amount of an oxide phase. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: September 13, 2016
    Assignee: BOEHLER SCHMIEDETECHNIK GmbH & CO. KG
    Inventors: Karin Rockenschaub, Wilfried Marketz
  • Patent number: 8888461
    Abstract: A material for a gas turbine component, to be specific a titanium-aluminum-based alloy material, including at least titanium and aluminum. The material has a) in the range of room temperature, the ?/B2-Ti phase, the ?2-Ti3Al phase and the ?-TiAl phase with a proportion of the ?/B2-Ti phase of at most 5% by volume, and b) in the range of the eutectoid temperature, the ?/B2-Ti phase, the ?2-Ti3Al phase and the ?-TiAl phase, with a proportion of the ?/B2-Ti phase of at least 10% by volume.
    Type: Grant
    Filed: October 18, 2008
    Date of Patent: November 18, 2014
    Assignees: MTU Aero Engines GmbH, Montanuniversitaet Leoben, Boehler Schmiedetechnik GmbH & Co. KG, GFE Metalle Unf Materialien GmbH
    Inventors: Wilfried Smarsly, Helmut Clemens, Volker Guether, Sascha Kremmer, Andreas Otto, Harald Chladil
  • Patent number: 8864918
    Abstract: A method for producing a component of a titanium-aluminum base alloy comprising hot isostatically pressing the alloy to form a blank, subjecting the blank to a hot forming by a rapid solid-blank deformation, followed by a cooling of the component to form a deformation microstructure with high recrystallization energy potential, thereafter subjecting the component to a heat treatment in the range of the eutectoid temperature (Teu) of the alloy, followed by cooling in air, to form a homogeneous, fine globular microstructure composed of phases GAMMA, BETA0, ALPHA2 and having an ordered atomic structure at room temperature. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: October 21, 2014
    Assignees: Boehler Schmiedetechnik GmbH & Co. KG, MTU Aero Engines GmbH
    Inventors: Helmut Clemens, Wilfried Wallgram, Martin Schloffer
  • Patent number: 8828160
    Abstract: Method for producing a forging from a gamma titanium aluminum-based alloy. The method includes heating at least a portion of a cylindrical or rod-shaped starting or raw material to a temperature of more than 1150° C. over a cross section of the at least a portion. The at least a portion corresponds to points at which the forging to be shaped has volume concentrations. The method also includes deforming the at least a portion through an applied force to form a biscuit having different cross sectional areas over a longitudinal extension of the biscuit, and finishing the forging through a second heating to a deformation temperature and at least one subsequent step.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: September 9, 2014
    Assignee: Boehler Schmiedetechnik GmbH & Co. KG.
    Inventors: Sascha Kremmer, Heinz Romen-Kierner, Wilfried Wallgram
  • Patent number: 8685298
    Abstract: A process for hot shaping a workpiece of metal or an intermetallic compound at a temperature of higher than about 1000° C. The method comprises at least partially coating the surface of the workpiece with a coating agent that comprises an oxide phase and an additive and/or an adhesive before processing the workpiece into a formed body or a rolling product. A coating agent for reducing the heat emission from the workpiece comprises a predominant amount of an oxide phase. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: April 1, 2014
    Assignee: Boehler Schmiedetechnik GmbH & Co KG
    Inventors: Karin Rockenschaub, Wilfried Marketz
  • Publication number: 20120325117
    Abstract: A process for hot shaping a workpiece of metal or an intermetallic compound at a temperature of higher than about 1000° C. The method comprises at least partially coating the surface of the workpiece with a coating agent that comprises an oxide phase and an additive and/or an adhesive before processing the workpiece into a formed body or a rolling product. A coating agent for reducing the heat emission from the workpiece comprises a predominant amount of an oxide phase. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
    Type: Application
    Filed: August 31, 2012
    Publication date: December 27, 2012
    Applicant: BOEHLER SCHMIEDETECHNIK GMBH & CO KG
    Inventors: Karin ROCKENSCHAUB, Wilfried MARKETZ
  • Publication number: 20110277891
    Abstract: A method for producing a component of a titanium-aluminum base alloy comprising hot isostatically pressing the alloy to form a blank, subjecting the blank to a hot forming by a rapid solid-blank deformation, followed by a cooling of the component to form a deformation microstructure with high recrystallization energy potential, thereafter subjecting the component to a heat treatment in the range of the eutectoid temperature (Teu) of the alloy, followed by cooling in air, to form a homogeneous, fine globular microstructure composed of phases GAMMA, BETA0, ALPHA2 and having an ordered atomic structure at room temperature. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
    Type: Application
    Filed: May 3, 2011
    Publication date: November 17, 2011
    Applicant: BOEHLER SCHMIEDETECHNIK GMBH & CO KG
    Inventors: Helmut CLEMENS, Wilfried WALLGRAM, Martin SCHLOFFER
  • Publication number: 20100329877
    Abstract: Method for producing a forging from a gamma titanium aluminum-based alloy. The method includes heating at least a portion of a cylindrical or rod-shaped starting or raw material to a temperature of more than 1150° C. over a cross section of the at least a portion. The at least a portion corresponds to points at which the forging to be shaped has volume concentrations. The method also includes deforming the at least a portion through an applied force to form a biscuit having different cross sectional areas over a longitudinal extension of the biscuit, and finishing the forging through a second heating to a deformation temperature and at least one subsequent step.
    Type: Application
    Filed: June 3, 2010
    Publication date: December 30, 2010
    Applicant: BOEHLER SCHMIEDETECHNIK GmbH & Co. KG
    Inventors: Sascha KREMMER, Heinz Romen KIERNER, Wilfried WALLGRAM
  • Publication number: 20100308491
    Abstract: A process for hot shaping a workpiece of metal or an intermetallic compound at a temperature of higher than about 1000° C. The method comprises at least partially coating the surface of the workpiece with a coating agent that comprises an oxide phase and an additive and/or an adhesive before processing the workpiece into a formed body or a rolling product. A coating agent for reducing the heat emission from the workpiece comprises a predominant amount of an oxide phase. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
    Type: Application
    Filed: June 4, 2010
    Publication date: December 9, 2010
    Applicant: BOEHLER SCHMIEDETECHNIK GMBH & CO KG
    Inventors: Karin Rockenschaub, Wilfried Marketz