Patents Assigned to Boston Dynamics
  • Publication number: 20240100702
    Abstract: Methods and apparatus for implementing a safety system for a mobile robot are described. The method comprises receiving first sensor data from one or more sensors, the first sensor data being captured at a first time, identifying, based on the first sensor data, a first unobserved portion of a safety field in an environment of a mobile robot, assigning, to each of a plurality of contiguous regions within the first unobserved portion of the safety field, an occupancy state, updating, at a second time after the first time, the occupancy state of one or more of the plurality of contiguous regions, and determining one or more operating parameters for the mobile robot, the one or more operating parameters based, at least in part, on the occupancy state of at least some regions of the plurality of contiguous regions at the second time.
    Type: Application
    Filed: September 21, 2023
    Publication date: March 28, 2024
    Applicant: Boston Dynamics, Inc.
    Inventors: John Aaron Saunders, Michael Murphy
  • Patent number: 11938628
    Abstract: An electronic circuit comprises a charge storing component, a set of one or more switching components coupled to the charge storing component, and an additional switching component coupled to each of the one or more switching components in the set. The additional switching component is configured to operate in a first state or a second state based on a received current or voltage. The first state prevents current to flow from the charge storing component to each of the one or more switching components in the set and the second state allows current to flow from the charge storing component to each of the one or more switching components in the set.
    Type: Grant
    Filed: November 19, 2021
    Date of Patent: March 26, 2024
    Assignee: Boston Dynamics, Inc.
    Inventor: Kyle Rogers
  • Patent number: 11931898
    Abstract: A computer-implemented method, when executed by data processing hardware of a robot having an articulated arm and a base, causes data processing hardware to perform operations. The operations include determining a first location of a workspace of the articulated arm associated with a current base configuration of the base of the robot. The operations also include receiving a task request defining a task for the robot to perform outside of the workspace of the articulated arm at the first location. The operations also include generating base parameters associated with the task request. The operations further include instructing, using the generated base parameters, the base of the robot to move from the current base configuration to an anticipatory base configuration.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: March 19, 2024
    Assignee: Boston Dynamics, Inc.
    Inventors: Stephen George Berard, Andrew James Barry, Benjamin John Swilling, Alfred Anthony Rizzi
  • Patent number: 11932332
    Abstract: An example robot includes a first actuator and a second actuator connecting a first portion of a first member of the robot to a second member of the robot. Extension of the first actuator accompanied by retraction of the second actuator causes the first member to roll in a first roll direction. Retraction of the first actuator accompanied by extension of the second actuator causes the first member to roll in a second roll direction. A third actuator connects a second portion of the first member to the second member. Extension of the third actuator accompanied by retraction of both the first and second actuators causes the first member to pitch in a first pitch direction. Retraction of the third actuator accompanied by extension of both the first and second actuators causes the first member to pitch in a second pitch direction.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: March 19, 2024
    Assignee: Boston Dynamics, Inc.
    Inventors: Christopher Everett Thorne, John Aaron Saunders, Marco da Silva, Thomas H. Miller, Alexander Douglas Perkins
  • Patent number: 11927961
    Abstract: A method for constraining robot autonomy language includes receiving a navigation command to navigate a robot to a mission destination within an environment of the robot and generating a route specification for navigating the robot from a current location in the environment to the mission destination in the environment. The route specification includes a series of route segments. Each route segment in the series of route segments includes a goal region for the corresponding route segment and a constraint region encompassing the goal region. The constraint region establishes boundaries for the robot to remain within while traversing toward the goal region. The route segment also includes an initial path for the robot to follow while traversing the corresponding route segment.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: March 12, 2024
    Assignee: Boston Dynamics, Inc.
    Inventors: Gina Fay, Joel Chestnutt, Marco da Silva, Alfred Anthony Rizzi
  • Patent number: 11920649
    Abstract: An example robot includes: a motor disposed at a joint configured to control motion of a member of the robot; a transmission including an input member coupled to and configured to rotate with the motor, an intermediate member, and an output member, where the intermediate member is fixed such that as the input member rotates, the output member rotates therewith at a different speed; a pad frictionally coupled to a side surface of the output member of the transmission and coupled to the member of the robot; and a spring configured to apply an axial preload on the pad, wherein the axial preload defines a torque limit that, when exceeded by a torque load on the member of the robot, the output member of the transmission slips relative to the pad.
    Type: Grant
    Filed: August 29, 2022
    Date of Patent: March 5, 2024
    Assignee: BOSTON DYNAMICS, INC.
    Inventors: Zachary John Jackowski, Adam Young
  • Patent number: 11921508
    Abstract: A method for estimating a ground plane includes receiving a pose of a robotic device with respect to a gravity aligned reference frame, receiving one or more locations of one or more corresponding contact points between the robotic device and a ground surface, and determining a ground plane estimation of the ground surface based on the orientation of the robotic device with respect to the gravity aligned reference frame and the one or more locations of one or more corresponding contact points between the robotic device and the ground surface. The ground plane estimation includes a ground surface contour approximation. The method further includes determining a distance between a body of the robotic device and the determined ground plane estimation and causing adjustment of the pose of the robotic device with respect to the ground surface based on the determined distance and the determined ground plane estimation.
    Type: Grant
    Filed: February 23, 2022
    Date of Patent: March 5, 2024
    Assignee: Boston Dynamics, Inc.
    Inventors: Kevin Blankespoor, Gabriel Nelson, Neil Neville
  • Patent number: 11911892
    Abstract: Example methods and devices for touch-down detection for a robotic device are described herein. In an example embodiment, a computing system may receive a force signal due to a force experienced at a limb of a robotic device. The system may receive an output signal from a sensor of the end component of the limb. Responsive to the received signals, the system may determine whether the force signal satisfies a first threshold and determine whether the output signal satisfies a second threshold. Based on at least one of the force signal satisfying the first threshold or the output signal satisfying the second threshold, the system of the robotic device may provide a touch-down output indicating touch-down of the end component of the limb with a portion of an environment.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: February 27, 2024
    Assignee: Boston Dynamics, Inc.
    Inventors: Zachary Jackowski, Kevin Blankespoor, John Aaron Saunders, Francis M. Agresti
  • Patent number: 11911916
    Abstract: A control system may receive a first plurality of measurements indicative of respective joint angles corresponding to a plurality of sensors connected to a robot. The robot may include a body and a plurality of jointed limbs connected to the body associated with respective properties. The control system may also receive a body orientation measurement indicative of an orientation of the body of the robot. The control system may further determine a relationship between the first plurality of measurements and the body orientation measurement based on the properties associated with the jointed limbs of the robot. Additionally, the control system may estimate an aggregate orientation of the robot based on the first plurality of measurements, the body orientation measurement, and the determined relationship. Further, the control system may provide instructions to control at least one jointed limb of the robot based on the estimated aggregate orientation of the robot.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: February 27, 2024
    Assignee: Boston Dynamics, Inc.
    Inventors: Alex Khripin, Alfred Anthony Rizzi
  • Publication number: 20240058962
    Abstract: A kit includes a computing device configured to control motion of equipment for receiving one or more parcels in an environment of a mobile robot. The kit also includes a structure configured to couple to the equipment. The structure comprises an identifier configured to be sensed by a sensor of the mobile robot.
    Type: Application
    Filed: August 9, 2023
    Publication date: February 22, 2024
    Applicant: Boston Dynamics, Inc.
    Inventors: Michael Murphy, Alexander Perkins, Guillermo Diaz-Lankenau, Matthew Turpin, Phillip Cable
  • Publication number: 20240061428
    Abstract: A computing device receives location information for a mobile robot. The computing device also receives location information for an entity in an environment of the mobile robot. The computing device determines a distance between the mobile robot and the entity in the environment of the mobile robot. The computing device determines one or more operating parameters for the mobile robot. The one or more operating parameters are based on the determined distance.
    Type: Application
    Filed: August 10, 2023
    Publication date: February 22, 2024
    Applicant: Boston Dynamics, Inc.
    Inventors: Alexander Perkins, Michael Murphy, Guillermo Diaz-Lankenau, Federico Vicentini, Mark Nehrkorn
  • Publication number: 20240051122
    Abstract: Systems and methods for determining movement of a robot about an environment are provided. A computing system of the robot (i) receives information including a navigation target for the robot and a kinematic state of the robot; (ii) determines, based on the information and a trajectory target for the robot, a retargeted trajectory for the robot; (iii) determines, based on the retargeted trajectory, a centroidal trajectory for the robot and a kinematic trajectory for the robot consistent with the centroidal trajectory; and (iv) determines, based on the centroidal trajectory and the kinematic trajectory, a set of vectors having a vector for each of one or more joints of the robot.
    Type: Application
    Filed: October 25, 2023
    Publication date: February 15, 2024
    Applicant: Boston Dynamics, Inc.
    Inventors: Robin Deits, Scott Kuindersma, Matthew P. Kelly, Twan Koolen, Yeuhi Abe, Benjamin Stephens
  • Publication number: 20240037936
    Abstract: A method for detecting boxes includes receiving a plurality of image frame pairs for an area of interest including at least one target box. Each image frame pair includes a monocular image frame and a respective depth image frame. For each image frame pair, the method includes determining corners for a rectangle associated with the at least one target box within the respective monocular image frame. Based on the determined corners, the method includes the following: performing edge detection and determining faces within the respective monocular image frame; and extracting planes corresponding to the at least one target box from the respective depth image frame. The method includes matching the determined faces to the extracted planes and generating a box estimation based on the determined corners, the performed edge detection, and the matched faces of the at least one target box.
    Type: Application
    Filed: October 11, 2023
    Publication date: February 1, 2024
    Applicant: Boston Dynamics, Inc.
    Inventors: Alex Perkins, Charles DuHadway, Peter Anderson-Sprecher
  • Patent number: 11880204
    Abstract: A method includes obtaining, from an operator of a robot, a return execution lease associated with one or more commands for controlling the robot that is scheduled within a sequence of execution leases. The robot is configured to execute commands associated with a current execution lease that is an earliest execution lease in the sequence of execution leases that is not expired. The method includes obtaining an execution lease expiration trigger triggering expiration of the current execution lease. After obtaining the trigger, the method includes determining that the return execution lease is a next current execution lease in the sequence. While the return execution lease is the current execution lease, the method includes executing the one or more commands for controlling the robot associated with the return execution lease which cause the robot to navigate to a return location remote from a current location of the robot.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: January 23, 2024
    Assignee: Boston Dynamics, Inc.
    Inventors: Thomas Hopkins Miller, Christopher Bentzel
  • Patent number: 11865715
    Abstract: A computing system may provide a model of a robot. The model may be configured to determine simulated motions of the robot based on sets of control parameters. The computing system may also operate the model with multiple sets of control parameters to simulate respective motions of the robot. The computing system may further determine respective scores for each respective simulated motion of the robot, wherein the respective scores are based on constraints associated with each limb of the robot and a predetermined goal. The constraints include actuator constraints and joint constraints for limbs of the robot. Additionally, the computing system may select, based on the respective scores, a set of control parameters associated with a particular score. Further, the computing system may modify a behavior of the robot based on the selected set of control parameters to perform a coordinated exertion of forces by actuators of the robot.
    Type: Grant
    Filed: July 20, 2021
    Date of Patent: January 9, 2024
    Assignee: Boston Dynamics, Inc.
    Inventors: Marco da Silva, Benjamin Stephens, Alfred Anthony Rizzi, Yeuhi Abe
  • Patent number: D1013001
    Type: Grant
    Filed: August 10, 2022
    Date of Patent: January 30, 2024
    Assignee: Boston Dynamics, Inc.
    Inventor: Aaron Abroff
  • Patent number: D1013002
    Type: Grant
    Filed: August 10, 2022
    Date of Patent: January 30, 2024
    Assignee: Boston Dynamics, Inc.
    Inventors: Aaron Abroff, Michael Murphy, Benjamin Zelnick
  • Patent number: D1013003
    Type: Grant
    Filed: August 10, 2022
    Date of Patent: January 30, 2024
    Assignee: Boston Dynamics, Inc.
    Inventors: Aaron Abroff, Michael Murphy, Benjamin Zelnick
  • Patent number: D1013004
    Type: Grant
    Filed: August 10, 2022
    Date of Patent: January 30, 2024
    Assignee: Boston Dynamics, Inc.
    Inventors: Aaron Abroff, John Aaron Saunders, Michael Murphy
  • Patent number: D1018621
    Type: Grant
    Filed: August 10, 2022
    Date of Patent: March 19, 2024
    Assignee: Boston Dynamics, Inc.
    Inventor: Aaron Abroff