Patents Assigned to Boston Scientific Neuromodulation Corporation
  • Patent number: 11040206
    Abstract: A neuromodulation system includes modulation output circuitry and control circuitry. The modulation output circuitry may be configured to deliver therapeutic electrical energy including therapeutic sub-threshold electrical energy and therapeutic a super-threshold electrical energy. The sub-threshold electrical energy is below a patient-perception threshold and the super-threshold electrical energy is above the patient-perception threshold. The patient-perception threshold is a boundary below which a patient does not sense delivery of the electrical energy and above which the patient does sense delivery of the electrical energy. The control circuitry is configured to control the modulation output circuitry to deliver the therapeutic electrical energy using alternating cycles of the sub-threshold electrical energy below the patient-perception threshold and the super-threshold electrical energy above the patient-perception-threshold.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: June 22, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Que T. Doan
  • Patent number: 11040204
    Abstract: An example of a system for modulating neuroinflammation at a tissue site in a patient includes a neuromodulation output circuit, a memory, and a control circuit. The neuromodulation output circuit may be configured to deliver the neuromodulation. The memory may be configured to store a neuromodulation parameter set selected to modulate neural activity at the tissue site and a sensed biomarker parameter. The biomarker parameter may include a measure of a biomarker or a measure of a derivative of the biomarker. The biomarker may be indicative of the neuroinflammation at the tissue site. The control circuit may be configured to control the delivery of the neuromodulation using the neuromodulation parameter set and adjust one or more parameters of the neuromodulation parameter set using the biomarker parameter.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: June 22, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Bradley Lawrence Hershey, Changfang Zhu
  • Patent number: 11040202
    Abstract: Passive tissue biasing circuitry in an Implantable Pulse Generator (IPG) is disclosed to facilitate the sensing of neural responses by holding the voltage of the tissue to a common mode voltage (Vcm). The IPG's conductive case electrode, or any other electrode, is passively biased to Vcm using a capacitor, as opposed to actively driving the (case) electrode to a prescribed voltage using a voltage source. Once Vcm is established, voltages accompanying the production of stimulation pulses will be referenced to Vcm, which eases neural response sensing. An amplifier can be used to set a virtual reference voltage and to limit the amount of current that flows to the case during the production of Vcm. In other examples, circuitry can be used to monitor the virtual reference voltage as useful to enabling the sensing the neural responses, and as useful to setting a compliance voltage for the current generation circuitry.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: June 22, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Goran N. Marnfeldt
  • Patent number: 11040192
    Abstract: An implantable pulse generator (IPG) is disclosed having a plurality of electrode nodes, each electrode node configured to be coupled to an electrode to provide stimulation pulses to a patient's tissue. The IPG includes a digital-to-analog converter configured to amplify a reference current to a first current specified by first control signals; a first resistance configured to receive the first current, wherein a voltage across the first resistance is held to a reference voltage at a first node; a plurality of branches each comprising a second resistance and configured to produce a branch current, wherein a voltage across each second resistance is held to the reference voltage at second nodes; and a switch matrix configurable to selectively couple any branch current to any of the electrode nodes via the second nodes.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: June 22, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Pujitha Weerakoon, Goran N. Marnfeldt, Philip L. Weiss
  • Patent number: 11033740
    Abstract: Systems and techniques are disclosed to establish programming of an implantable electrical neurostimulation device for treating chronic pain of a human subject, through the use of a dynamic model adapted to determine pain treatment parameters for a human patient and identify a new device operational program to implement the pain treatment parameters to address the chronic pain condition.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: June 15, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Qinghuang Lin, Jeffrey Rogers, Giovanni Russo, Andrea Simonetto, Tigran Tchrakian
  • Patent number: 11033748
    Abstract: A neurostimulation system configured for providing neurostimulation therapy to a patient. A user customizes a pulse pattern on a pulse-by-pulse basis. Electrical stimulation energy is delivered to at least one electrode in accordance with the customized pulse pattern.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: June 15, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Michael A. Moffitt
  • Patent number: 11020586
    Abstract: An implantable electrical stimulation lead including a lead body having a distal end, a proximal end, and a longitudinal length, wherein the distal end of the lead body is formed into a hook or coil shape; a plurality of electrodes disposed along the hook or coil at the distal end of the lead body; a plurality of terminals disposed on the proximal end of the lead body; and a plurality of conductors, each conductor electrically coupling at least one of the electrodes to at least one of the terminals. The lead can be used to stimulate, for example, a dorsal root ganglion with the hook-shaped or coil-shaped distal end disposed around a portion of the dorsal root ganglion.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: June 1, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Joshua Dale Howard, Jacob B. Leven
  • Patent number: 11020592
    Abstract: A system for providing electrical stimulation to a patient includes a processor configured to: provide a time-ordered arrangement of multiple stimulation instances, where each of the stimulation instances is configured to produce a different stimulation field from each other stimulation instance in the arrangement; provide an ON/OFF switch pattern that includes alternating ON periods and OFF periods; generate an intermittent stimulation program that corresponds to repetition of the arrangement of stimulation instances with omission of each of the stimulation instances occurring during the OFF periods; and initiate a signal that provides a pulse generator with instructions that enable the pulse generator to generate stimulation according to the intermittent stimulation program using an electrical stimulation lead coupled to the pulse generator.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: June 1, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Danil Tyulmankov, Hemant Bokil, Peter Alexander Tass
  • Patent number: 11013913
    Abstract: A kit or arrangement for securing a burr hole plug that includes a guide base having an upper flange, a lower flange, and a connecting member coupling the upper flange to the lower flange, each of the upper flange and the lower flange defining one or more guide holes, wherein the one or more guide holes of the upper flange are aligned with the one or more guide holes of the lower flange; a drill shank including a cutting element and a main shaft that are configured to pass through any one of the one or more guide holes in the upper flange; and one or more guide collets including a collet shaft and a fastener tube extending from the collet shaft to receive a fastener, where the collet shaft and fastener tube are configured for insertion into any one of the guide holes in the upper flange.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: May 25, 2021
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventor: Zdzislaw Bernard Malinowski
  • Patent number: 11013912
    Abstract: Medical device systems, methods, and algorithms are disclosed for providing complex stimulation waveforms. The waveforms may selectively modulate or activate specific neural targets or selected ratios of specific neural targets. Some of the waveforms include pre-pulse phases defined by parameters, the value of which changes during the pre-pulse phase. Also disclosed herein are graphical user interfaces (GUIs) that allow the selection of waveforms configured to selectively modulate or activate specific neural targets or selected ratios of the neural targets. Adjustable parameters of the waveforms are adjusted automatically based on selection of user-defined parameters.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: May 25, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, G. Karl Steinke, Richard Mustakos
  • Patent number: 11000688
    Abstract: A Medical Device Application (MDA) is disclosed for an external device (e.g., a cell phone) that can communicate with an Implantable Medical Device (IMD). The MDA receives data logged in the IMD, processes that data in manners reviewable by an IMD patient, and that can control the IMD based on such processed data. The MDA can use the logged data to adjust IMD therapy based on patient activity or posture, and allows a patient to learn optimal therapy settings for particular activities. The MDA can also use the logged data to allow a patient to review details about IMD battery performance, whether such battery is primary or rechargeable, and to control stimulation parameters based on that performance. The MDA also allows a patient to enter medicine dose information, to review the relationship between medicinal therapy and IMD therapy, and to adjust IMD therapy based on the dosing information.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: May 11, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Samuel Tahmasian
  • Patent number: 10994146
    Abstract: An external device for use with an implantable medical device includes circuitry that is configured to drive a coil to produce a static electromagnetic field to change a status of the implantable medical device. The static electromagnetic field may replace a physical magnet, which may not be commonly carried by a patient, to induce an emergency shutdown of the implantable medical device. The external device may be a charger or controller that is used to charge or communicate with the implantable medical device, and the coil may primarily be used for those charging and telemetry functions in such devices.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: May 4, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Joey Chen
  • Patent number: 10994142
    Abstract: A system is disclosed in one example which allows for modelling the wellness of a given Implantable Pulse Generator (IPG) patient. The modelling, embodied in an algorithm, uses one or more qualitative measurements and one or more quantitative measurements taken from the patient. The algorithm correlates the qualitative measurements to the various quantitative measurements to eventually, over time, learn which quantitative measurements best correlate to the qualitative measurements provided by the patient. The algorithm can then using current quantitative measurements predict a wellness factor or score for the patient, which is preferably weighted to favor the quantitative measurements that best correlate to that patient's qualitative assessment of therapy effectiveness. Additionally, the wellness factor may be used to adjust the stimulation program that the IPG device provides to the patient.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: May 4, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Michael A. Moffitt
  • Patent number: 10994143
    Abstract: Waveforms for a stimulator device, and methods and circuitry for generating them, are disclosed having high- and low-frequency aspects. The waveforms comprise a sequence of pulses issued at a low frequency which each pulse comprising first and second charge-balanced phases. One or both of the phases comprises a plurality a monophasic sub-phase pulses issued at a high frequency in which the sub-phase pulses are separated by gaps. The current during the gaps in a phase can be zero, or can comprise a non-zero current of the same polarity as the sub-phase pulses issued during that phase. The disclosed waveforms provide benefits of high frequency stimulation such as the promotion of paresthesia free, sub-threshold stimulation, but without drawbacks inherent in using high-frequency biphasic pulses.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: May 4, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Goran N. Marnfeldt, Kiran K. Gururaj, Rafael Carbunaru
  • Patent number: 10994136
    Abstract: This document discusses, among other things, systems and methods for providing pain relief to a patient. Recording circuitry may receive electrical signals corresponding to evoked compound action potentials in the patient that may be produced in response to external stimulation of a location where the patient is experiencing pain. The received electrical signals may be stored in a memory. Internal stimulation may then be applied to the patient and control circuitry may receive electrical signals corresponding to evoked compound action potentials in the patient that may be produced in response to the internal stimulation. The control circuitry may then adjust electrical parameters of the internal stimulation, such as to reduce a difference between the electrical signals corresponding to evoked compound action potentials produced in response to the internal stimulation and electrical signals corresponding to evoked compound action potentials produced in response to the external stimulation.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: May 4, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Natalie A. Brill, Rosana Esteller
  • Patent number: 10981011
    Abstract: An operating room cable assembly for electrically coupling at least one implantable electrical stimulation lead to a trial stimulator includes an elongated body; a trial stimulator connector disposed at one end of the elongated body; and a lead connector disposed at another end of the elongated body. The lead connector can include one or more buttons that can be pushed to load a lead into the lead connector and released to retain the lead. Alternatively, the lead connector can include a lever that can be operated to load the lead. A further alternative is a slider with a lead engagement element that can be slid between positions allowing loading of a lead and engagement of the lead. Other alternatives include a lead connector with doors that can swing open to allow loading of a lead or a collet/sleeve that can be tightened on the lead.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: April 20, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Joshua Dale Howard, Christopher Shanahan, Geoffrey Abellana Villarta, Peter J. Yoo
  • Patent number: 10974055
    Abstract: Circuitry useable to protect and reliably charge a rechargeable battery, even from a zero-volt state, is disclosed, and is particularly useful when employed in an implantable medical device. The circuit includes two charging paths, a first path for trickle charging the battery, and a second path for charging the battery at relatively higher currents. A passive diode is used in the first trickle-charging path which allows trickle charging even when the battery voltage is too low for reliable gating, while a gateable switch (preferably a PMOS transistor) is used in the second higher-current charging path when the voltage is higher and the switch can therefore be gated more reliably. A second diode between the two paths ensures no leakage to the substrate through the gateable switch during trickle charging. The load couples to the battery through the switch, and preferably through a second switch specifically used for decoupling the load.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: April 13, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Yuping He, David K. L. Peterson
  • Patent number: 10974042
    Abstract: A system and method for extracting a cardiac signal from a spinal signal include measuring a spinal signal at one or more electrodes that are connected to a neurostimulator and implanted within a patient's spinal canal and processing the spinal signal to extract the cardiac signal, which includes features that are representative of the patient's cardiac activity. Processing the spinal signal to extract the cardiac signal can include filtering the spinal signal using one or more filters. Model reduction schemes such as independent component analysis can additionally or alternatively be employed to extract the cardiac signal. The extracted cardiac signal can include a number of features that correspond to an electrocardiogram and can be used to determine the patient's heart rate and/or to detect a cardiac anomaly. The determined cardiac features can additionally be used to adjust parameters of the stimulation that is provided by the neurostimulator.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: April 13, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rosana Esteller, Deepa Mahajan, Bhaskar Sen, Tianhe Zhang
  • Patent number: 10974054
    Abstract: An external control device for use with a medical component implanted within a patient. The device comprises a user interface configured for receiving user input, displaying a first graphical representation of the medical component in the context of a global graphical representation of an anatomical region of the patient, displaying a view finder defining a portion of the global graphical representation, and displaying a second graphical representation of the medical component in the context of a local graphical representation of the portion of the anatomical region portion. The external control device further comprises control circuitry configured for, in response to the input from the user, modifying the displayed view finder to spatially define a different portion of the global graphical representation, such that the second graphical representation of the medical component is displayed in the context of a local graphical representation of the different portion of the anatomical region.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: April 13, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Mun Pook Lui, Sridhar Kothandaraman, Gyuman Kim
  • Patent number: 10974053
    Abstract: An example of a system may include a processor subsystem; and a memory device comprising instructions, which when executed by the processor subsystem, cause the processor subsystem to: receive at an application executing on a user device, a request to modify the application; transmit the request to an administrative user device for approval; receive a response to the request from the administrative user device; and modify a functionality of the application in response to receiving the response.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: April 13, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Joshua Dale Howard, Anne M. Pianca