Patents Assigned to Boston Scientific Neuromodulation
  • Patent number: 11786736
    Abstract: Methods and systems for detecting if a stimulation lead implanted in a patient's brain has moved. Lead movement occurring between a first time and a second time may be determined by comparing features extracted from evoked potentials recorded at the two times. The disclosed methods and systems are particularly useful for determining if a stimulation lead has moved between the time it was implanted in the patient's brain and the time that stimulation parameters are being optimized. Lead movement during implantation, during parameter optimization, and during or between other lead optimization processes may be determined as well.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: October 17, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: G. Karl Steinke, Manoj Vasantharaj, Raul Enrique Serrano Carmona, Mahsa Malekmohammadi
  • Patent number: 11786737
    Abstract: Medical device systems and methods for providing spinal cord stimulation (SCS) are disclosed. The SCS systems and methods provide therapy below the perception threshold of the patient. The methods and systems are configured to measure neurological responses to stimulation and use the neurological responses as biomarkers to maintain and adjust therapy. An example of neurological responses includes an evoked compound action potential (ECAP).
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: October 17, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Rosana Esteller, Rafael Carbunaru
  • Patent number: 11786742
    Abstract: An operating room cable assembly for electrically coupling at least one implantable electrical stimulation lead to a trial stimulator includes an elongated body; a trial stimulator connector disposed at one end of the elongated body; and a lead connector disposed at another end of the elongated body. The lead connector can include one or more buttons that can be pushed to load a lead into the lead connector and released to retain the lead. Alternatively, the lead connector can include a lever that can be operated to load the lead. A further alternative is a slider with a lead engagement element that can be slid between positions allowing loading of a lead and engagement of the lead. Other alternatives include a lead connector with doors that can swing open to allow loading of a lead or a collet/sleeve that can be tightened on the lead.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: October 17, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Joshua Dale Howard, Christopher Shanahan, Geoffrey Abellana Villarta, Peter J. Yoo
  • Patent number: 11771918
    Abstract: An optical stimulation system includes a light source configured to produce light for optical stimulation; a light monitor; an optical lead coupled, or coupleable, to the light source and the light monitor; and a control module coupled, or coupleable, to the light source and the light monitor. The control module includes a memory, and a processor coupled to the memory and configured for receiving a request for verification or measurement of a light output value; in response to the request, receiving, from the light monitor, a measurement of light generated by the light source; and, based on the measurement, reporting a response to the request.
    Type: Grant
    Filed: October 12, 2022
    Date of Patent: October 3, 2023
    Assignees: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION, COMMISSARIAT À L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES (“CEA”)
    Inventors: Dennis Allen Vansickle, Adam Thomas Featherstone, John Rivera, Claude Chabrol, Sarah Renault, Adrien Poizat, Michael A. Moffitt
  • Patent number: 11751804
    Abstract: An example of a system for managing pain may include a pain monitoring circuit, a pain relief device, and a control circuit. The pain monitoring circuit may include a parameter analyzer and a pain score generator. The parameter analyzer may be configured to receive and analyze at least two parameters selected from a physiological parameter indicative of a physiological function or state of a patient, a functional parameter indicative of a physical activity or state of the patient, or a patient parameter including subjective information provided by the patient. The pain score generator may be configured to compute a composite pain score using an outcome of the analysis. The composite pain score may indicate a degree of the pain. The pain relief device may be configured to deliver a pain-relief therapy. The control circuit may be configured to control the delivery of the pain-relief therapy using the composite pain score.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: September 12, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Elizabeth Mary Annoni, Bryan Allen Clark, Pramodsingh Hirasingh Thakur, Jianwen Gu, James John Kleinedler, Kyle Harish Srivastava, David J. Ternes, David L. Perschbacher, Rosana Esteller
  • Patent number: 11752348
    Abstract: A method or system for facilitating the determining and setting of stimulation parameters for programming an electrical stimulation system using closed loop programming is provided. For example, pulse generator feedback logic is executed by a processor to interface with control instructions of an implantable pulse generator by incorporating one or more machine learning engines to automatically generate a proposed set of stimulation parameter values that each affect a stimulation aspect of the implantable pulse generator, receive one or more clinical responses and automatically generate a revised set of values taking into account the received clinical responses, and repeating the automated receiving of a clinical response and adjusting the stimulation parameter values taking the clinical response into account, until or unless a stop condition is reach or the a therapeutic response is indicated within a designated tolerance.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: September 12, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: David Blum, Sherry Lin, Hemant Bokil, Michael A. Moffitt
  • Patent number: 11745021
    Abstract: A Graphical User Interface (GUI) for an external device used to program an implantable stimulator device is disclosed. The GUI includes aspects useful in adjusting the current magnitude provided at one or more of the stimulator device's electrodes. In particular, the GUI includes an amplitude slider, which allows the user to slide an indicator to increase or decrease the current magnitude at different rates depending on the length of the slide. The GUI further allows the user to prescribe drop back functionality, which reduces the current magnitude by a prescribed amount when the indicator is released. In one example, drop back functionality can be engaged in accordance with a rate threshold, and thus drop back functionality will only occur when the rate of increase equals or is above the threshold when the control button is released.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: September 5, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Goran N. Marnfeldt
  • Patent number: 11745016
    Abstract: Systems and techniques are disclosed to establish programming of an implantable electrical neurostimulation device for treating pain of a human subject, through the use and adjustment of analgesic stimulation parameters based on trust dynamics and trust measurements. In an example, the system to establish programming of the neurostimulation device performs operations that: determine a trust measurement value that is derived from results of at least one commitment made with a human subject, via observable interactions; determine a modification of at least one neurostimulation programming parameter, based on the trust measurement value; and to cause the implantable neurostimulation device to implement the modification of the at least one neurostimulation programming parameter. Further examples are provided to produce and track the trust measurement value, as well as identify a pain susceptibility value and determine a receptiveness to analgesic effects based on these and other trust dynamics.
    Type: Grant
    Filed: November 29, 2021
    Date of Patent: September 5, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: James R. Kozloski, Anup Kalia, Jeffrey Rogers, Sara E. Berger
  • Patent number: 11738202
    Abstract: A Medical Device Application (MDA) is disclosed for an external device (e.g., a cell phone) that can communicate with an Implantable Medical Device (IMD). The MDA receives data logged in the IMD, processes that data in manners reviewable by an IMD patient, and that can control the IMD based on such processed data. The MDA can use the logged data to adjust IMD therapy based on patient activity or posture, and allows a patient to learn optimal therapy settings for particular activities. The MDA can also use the logged data to allow a patient to review details about IMD battery performance, whether such battery is primary or rechargeable, and to control stimulation parameters based on that performance. The MDA also allows a patient to enter medicine dose information, to review the relationship between medicinal therapy and IMD therapy, and to adjust IMD therapy based on the dosing information.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: August 29, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Samuel Tahmasian
  • Patent number: 11738201
    Abstract: An external device for use with an implantable medical device includes circuitry that is configured to drive a coil to produce a static electromagnetic field to change a status of the implantable medical device. The static electromagnetic field may replace a physical magnet, which may not be commonly carried by a patient, to induce an emergency shutdown of the implantable medical device. The external device may be a charger or controller that is used to charge or communicate with the implantable medical device, and the coil may primarily be used for those charging and telemetry functions in such devices.
    Type: Grant
    Filed: April 7, 2021
    Date of Patent: August 29, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Joey Chen
  • Patent number: 11724114
    Abstract: An implantable pulse generator (IPG) is disclosed having an improved ability to steer anodic and cathodic currents between the IPG's electrodes. Each electrode node has at least one PDAC/NDAC pair to source/sink or sink/source a stimulation current to an associated electrode node. Each PDAC and NDAC receives a current with a magnitude indicative of a total anodic and cathodic current, and data indicative of a percentage of that total that each PDAC and NDAC will produce in the patient's tissue at any given time, which activates a number of branches in each PDAC or NDAC. Each PDAC and NDAC may also receive one or more resolution control signals specifying an increment by which the stimulation current may be adjusted at each electrode. The current received by each PDAC and NDAC is generated by a master DAC, and is preferably distributed to the PDACs and NDACs by distribution circuitry.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: August 15, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Pujitha Weerakoon, David M. Wagenbach, Philip L. Weiss, Goran N. Marnfeldt, Kiran K. Gururaj
  • Patent number: 11707622
    Abstract: Methods and systems for facilitating the determining and setting of stimulation parameters for programming an electrical stimulation system are disclosed. The disclosed systems and methods use algorithms to identify patient-specific metrics to use as feedback variables for optimizing stimulation parameters for a patient. The patient-specific metric(s) are determined by ranking a plurality of clinical indicators for the patient with and without the presence of a medical intervention to determine which clinical indicators respond most strongly to the medical intervention. The clinical indicators that respond most strongly can be used as the patient-specific metric for optimizing stimulation, or a composite patient-specific metric may be derived as a mathematical combination of a plurality of clinical indicators that respond well to the intervention.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: July 25, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: León M. Juárez Paz
  • Patent number: 11697021
    Abstract: An implantable pulse generator (IPG) is disclosed having an improved ability to steer anodic and cathodic currents between the IPG's electrodes. Each electrode node has at least one PDAC/NDAC pair to source/sink or sink/source a stimulation current to an associated electrode node. Each PDAC and NDAC receives a current with a magnitude indicative of a total anodic and cathodic current, and data indicative of a percentage of that total that each PDAC and NDAC will produce in the patient's tissue at any given time, which activates a number of branches in each PDAC or NDAC. Each PDAC and NDAC may also receive one or more resolution control signals specifying an increment by which the stimulation current may be adjusted at each electrode. The current received by each PDAC and NDAC is generated by a master DAC, and is preferably distributed to the PDACs and NDACs by distribution circuitry.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: July 11, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Pujitha Weerakoon, David M. Wagenbach, Philip L. Weiss, Goran N. Marnfeldt
  • Patent number: 11697022
    Abstract: A group select matrix is added to an implantable stimulator device to allow current sources to be dedicated to particular groups of electrodes at a given time. The group select matrix can time multiplex the current sources to the different groups of electrodes to allow therapy pulses to be delivered at the various groups of electrodes in an interleaved fashion. Each of the groups of electrodes may be confined to a particular electrode array implantable at a particular non-overlapping location in a patient's body. A switch matrix can be used in conjunction with the group select matrix to provide further flexibility to couple the current sources to any of the electrodes.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: July 11, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Dongchul Lee
  • Patent number: 11691012
    Abstract: Methods and systems for electrical stimulation can include obtaining a biosignal of the patient; altering at least one stimulation parameter of an electrical stimulation system in response to the biosignal; and delivering an electrical stimulation current to one or more selected electrodes of the electrical stimulation system using the at least one stimulation parameter. In some embodiments, a power spectrum is determined from the biosignal. In some embodiments, the biosignal is at least two different biosignals measured at the same or different locations on the patient and a coherence, correlation, or association between the two biosignal is determined.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: July 4, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, Hemant Bokil
  • Patent number: 11691014
    Abstract: An Example of a system for providing a patient with pain management may include a sleep monitoring circuit, a pain relief device, and a control circuit. The sleep monitoring circuit may be configured to sense one or more sleep signals from the patient and to determine a sleep state of the patient using the one or more sleep signals. The one or more sleep signals may include one or more physiological signals corresponding to the sleep state of the patient. The pain relief device may be configured to deliver one or more pain relief therapies. The control circuit may be configured to control the delivery of the one or more pain relief therapies using therapy parameters and to adjust the therapy parameters based on the determined sleep state.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: July 4, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Kyle Harish Srivastava, Bryan Allen Clark, Elizabeth Mary Annoni, Jianwen Gu
  • Patent number: 11684779
    Abstract: An example of a system may include an electrode arrangement and a neuromodulation device configured to use electrodes in the electrode arrangement to generate a neuromodulation field. The neuromodulation device may include a neuromodulation generator, a neuromodulation control circuit and a storage. The storage may include a stochastically-modulated neuromodulation parameter set and the stochastically-modulated neuromodulation parameter set may include at least one stochastically-modulated parameter. The controller may be configured to control the neuromodulation generator using the stochastically-modulation parameter set to generate the neuromodulation field.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: June 27, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Changfang Zhu
  • Patent number: 11666761
    Abstract: An example of a system may include a processor and a memory device comprising instructions, which when executed by the processor, cause the processor to: access a patient metric of a subject; use the patient metric as an input to a machine learning algorithm, the machine learning algorithm to search a plurality of neuromodulation parameter sets and to identify a candidate neuromodulation parameter set of the plurality of neuromodulation parameter sets, the candidate neuromodulation parameter set designed to produce a non-regular waveform that varies over a time domain and a space domain; and program a neuromodulator using the candidate neuromodulation parameter set to stimulate the subject.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: June 6, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, Natalie A. Brill, Jianwen Gu, Juan Gabriel Hincapie Ordonez, Changfang Zhu, Hemant Bokil, Stephen Carcieri
  • Patent number: 11654285
    Abstract: An example of a neurostimulation system may include a programming control circuit and a stimulation control circuit. The programming control circuit may be configured to program a stimulation device for delivering the neurostimulation according to a stimulation program specifying a present stimulation field set including stimulation field(s) each defined by a set of active electrodes selected from a plurality of electrodes. The stimulation control circuit may be configured to determine the stimulation program and may include field programming circuitry that may be configured to set the present stimulation field set to an initial stimulation field set specifying stimulation fields allowing for the delivery of the neurostimulation to produce an intended effect and to identify an optimal stimulation field set that satisfies one or more optimization criteria by removing stimulation field(s) from the initial stimulation field set.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: May 23, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, Rafael Carbunaru
  • Patent number: 11648399
    Abstract: An example of an apparatus for percutaneously delivering neurostimulation energy to a patient and sensing from the patient using a test device placed externally to the patient is provided. The apparatus may include a stimulation lead, a sensing reference electrode, a sensing wire, and a connection system. The stimulation lead may be configured to be percutaneously introduced into the patient to place the one or more electrodes in the patient. The sensing reference electrode may be configured to be placed in the patient. The sensing wire may be connected to the sensing reference electrode and configured to be percutaneously introduced into the patient to place the sensing reference electrode in the patient. The connection system may be configured to mate the lead connector and the wire connector and to provide electrical connections between the lead connector and the test device and between the wire connector and the test device.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: May 16, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Joseph M. Bocek, Michael X. Govea, Rosana Esteller