Abstract: A system and method for testing a wireless earpiece which provides improved efficiencies in manufacturing. Automated testing of one or more printed circuit boards of the wireless earpiece is initiated. The semi-assembled wireless earpiece is tested. End-of-line functional testing is performed. Final acoustic testing of the wireless earpiece is performed.
Abstract: An earpiece includes an earpiece housing, a processor disposed within the ear piece housing, a speaker operatively connected to the processor, at least one microphone operatively connected to the processor, and a cellular transceiver disposed within the earpiece housing and operatively connected to the processor. The cellular transceiver may be a low energy long term evolution (LTE) cellular transceiver. The ear piece may include an inertial sensor disposed within the earpiece housing and operatively connected to the processor. The earpiece may further include a short range transceiver disposed within the earpiece housing. The short range transceiver may be a Bluetooth transceiver. The earpiece may also include a slot within the earpiece housing for receiving an identity module.
Abstract: A system includes a left earpiece comprising a left earpiece housing and a right earpiece comprising a right earpiece housing and a radio transceiver disposed within at least one of the left earpiece and the right earpiece, and a software application executable on a computing device in operative communication with the radio transceiver; wherein the software application provides a visual representation of the left earpiece and a visual representation of the right earpiece and wherein the visual representation of the left earpiece indicates a remaining charge for the left earpiece and wherein the visual representation of the right earpiece indicates a remaining charge for the right earpiece. A method for displaying battery life is also provided.
Abstract: A system for increasing safety during robot-human collaborations in a manufacturing environment is provided. The method includes at least one wearable device for use by a human worker and an industrial robot in operative communication with the at least one wearable device. The industrial robot is equipped to detect location of the human worker using the at least one wearable device. The at least one wearable device may include an earpiece. The at least one wearable device may include a set of earpieces including a left wearable earpiece and a right wearable earpiece.
Abstract: A method of providing audiometric feedback from a network of distributed body sensors using one or more earpieces includes receiving signals from the network of distributed body sensors at the one or more wireless earpieces, processing the signals received at the one or more wireless earpieces to determine a location of individual body sensors within the network of distributed body sensors relative the one or more earpieces, and producing audiometric feedback at the one or more wireless earpieces at least partially based on the locations of the individual body sensors relative to the one or more earpieces.
Abstract: A system, method and personal area network for communicating utilizing a wireless earpiece. The wireless earpiece is linked with a communications device. Sensor measurements of a condition of a user are performed utilizing sensors of the wireless earpiece. A determination is made whether the sensor measurements exceed one or more thresholds. Communications regarding the sensor measurements are sent from the wireless earpiece to the communications device regarding the condition of the user.
Type:
Application
Filed:
September 27, 2018
Publication date:
January 31, 2019
Applicant:
BRAGI GmbH
Inventors:
Peter Vincent Boesen, Lisa Kingscott, Rafael Pereira
Abstract: A system includes a vehicle, the vehicle comprising a vehicle network. The system further includes a wearable device in operative communication with the vehicle network. The vehicle is configured to determine user settings for the vehicle from data received from the wearable device and implement the user settings for the vehicle. A method for adjusting user settings associated with a vehicle based on data from a wearable device includes acquiring user data from a wearable device at a vehicle, based on the user data, determining by the vehicle one or more user settings, and automatically adjusting by the vehicle of one or more vehicle features based on the one or more user settings.
Abstract: A packaging system and method for wireless earpieces. The packaging system includes wireless earpieces includes one or more sensors and a near field communication chip. The near field communication chip communicates with a number of packaging systems adjacent to the packaging system if present. The packaging system further includes packaging defining a window for displaying the wireless earpieces. The packing prevents damage to the wireless earpieces. The packaging performs a display action in response to a display criteria being met.
Type:
Grant
Filed:
August 23, 2016
Date of Patent:
January 29, 2019
Assignee:
BRAGI GmbH
Inventors:
Nikolaj Hviid, Arne D. Loermann, Matthias Lackus, Christian Begusch
Abstract: A method includes providing a set of earpieces comprising a left ear piece and a right ear piece, each of the earpieces comprising an ear piece housing, a wireless transceiver disposed within the ear piece housing, a processor disposed within the housing and operatively connected to the wireless transceiver. The method further includes providing a set of eyeglasses comprising an eyeglass frame, a wireless transceiver disposed within the eyeglass frame, a processor disposed within the eyeglass frame, and a first lens and a second lens operatively connected to the eyeglass frame. The method provides for communicating data between at least one of the set of earpieces and the set of eyeglasses.
Type:
Application
Filed:
September 21, 2018
Publication date:
January 24, 2019
Applicant:
BRAGI GmbH
Inventors:
Peter Vincent Boesen, Jake Berry Turner
Abstract: A system and method for managing wireless earpieces. Circuitry of the wireless earpieces are powered utilizing a high-power mode in response to detecting a magnetic field is not applied to one or more of the wireless earpieces. The power sent to the circuitry of the wireless earpieces is altered to a low power mode in response to detecting the magnetic field is applied to one or more of the wireless earpieces.
Type:
Application
Filed:
September 27, 2018
Publication date:
January 24, 2019
Applicant:
BRAGI GmbH
Inventors:
Eric Christian Hirsch, Peter Vincent Boesen
Abstract: A system, method and one or more wireless earpieces for calibrating one or more wireless earpieces. An indication the calibration of the one or more wireless earpieces is required is received. Sensors of the one or more wireless earpieces are calibrated in response to receiving the indication. Calibration information is analyzed. A determination is made whether the calibration is successful utilizing the calibration information.
Abstract: An earpiece includes an earpiece housing, a processor disposed within the earpiece, a speaker operatively connected to the processor, a microphone operatively connected the processor, and a global navigation satellite system (GNSS) receiver disposed within the earpiece. A system may include a first earpiece having a connector with earpiece charging contacts, a charging case for the first earpiece, the charging case having contacts for connecting with the earpiece charging contacts, and a global navigation satellite system (GNSS) receiver disposed within the charging case.
Abstract: A wireless earpiece includes a wireless earpiece housing, a processor disposed within the wireless earpiece housing, at least one microphone operatively connected to the processor, and at least one speaker operatively connected to the processor. The processor is configured to receive audio from the at least one microphone, perform processing of the audio to provide processed audio, and output the processed audio to the at least one speaker. The processing of the audio involves identifying body generated sounds generated by a body of a user of the wireless earpiece and removing the body generated sounds.
Abstract: A system includes a vehicle, a vehicle network disposed within the vehicle, and an entertainment system disposed within the vehicle wherein the entertainment system comprises at least one audio source. The entertainment system is configured to wirelessly communicate with at least one wireless earpiece to provide for streaming of audio to and from the at least one wireless earpiece. A method includes providing a vehicle having an entertainment system, wirelessly connecting the entertainment system of the vehicle to at least one wireless ear piece associated with an occupant within the vehicle, and streaming audio from the at least one wireless earpiece to the entertainment system of the vehicle.
Abstract: A method of providing audio feedback in response to a user performance using an earpiece includes steps of identifying a manual work operation to be performed by the user, wherein the identifying the manual work operation is performed by the earpiece, monitoring performance of the manual work operation by the user, wherein the monitoring the performance of the work operation is performed by the earpiece, generating 3D sound cues at the earpiece to assist in the performance of the manual work operation by the user, and outputting the 3D sound cues to the user at one or more speakers of the earpiece during the performance of the manual work operation by the user.
Abstract: A system includes a wearable device having at least one sensor configured to determine a user's fingerprint data, at least one data storage device containing authentication data, and at least one processor configured to compare the user's fingerprint data with the authentication data to authenticate a user. A method of authenticating a wearable device includes producing a fingerprint, determining fingerprint data derived from the fingerprint with one or more sensors, comparing the fingerprint data with authentication data on one or more data storage devices, and authenticating the user if the fingerprint data and the authentication data match.
Type:
Grant
Filed:
April 11, 2018
Date of Patent:
January 1, 2019
Assignee:
BRAGI GmbH
Inventors:
Mohamed Ali Razouane, Peter Vincent Boesen
Abstract: An earpiece includes an earpiece housing, a processor disposed within the earpiece housing, a memory operatively connected to the processor and disposed within the earpiece housing, and a plurality of software applications stored within the memory. The earpiece is configured to allow a user of the earpiece to select one of the plurality of software applications to run using the processor as a foreground application and allows for receiving user input into the foreground application.
Abstract: An earpiece includes an earpiece housing, at least one biometric sensor disposed within the earpiece, a wireless transceiver disposed within the earpiece for voice communications, an intelligent control operatively connected to the at least one biometric sensor and the wireless transceiver, a speaker operatively connected to the intelligent control, and at least one microphone operatively connected to the intelligent control. The earpiece is configured to monitor biometrics of a user using the at least one biometric sensor, communicate biometric data to the user, detect a crisis level event, and communicate occurrence of the crisis level event using the wireless transceiver.
Abstract: A method for determining a status of a user utilizing wireless earpieces includes performing sensor measurements of a user utilizing at least optical sensors of the wireless earpieces, wherein the optical sensors detect metabolic abnormalities of the user, analyzing the sensor measurements, determining the status of the user utilizing at least sensor measurements from the optical sensors of the wireless earpieces, and communicating an alert to the user in response to there being a change in the status of the user. A wireless earpiece or set of wireless earpieces with optical sensors for detecting metabolic abnormalities are also provided.