Abstract: A method for creating a dynamic neural function library that relates to Artificial Intelligence systems and devices is provided. Within a dynamic neural network (artificial intelligent device), a plurality of control values are autonomously generated during a learning process and thus stored in synaptic registers of the artificial intelligent device that represent a training model of a task or a function learned by the artificial intelligent device. Control Values include, but are not limited to, values that indicate the neurotransmitter level that is present in the synapse, the neurotransmitter type, the connectome, the neuromodulator sensitivity, and other synaptic, dendric delay and axonal delay parameters. These values form collectively a training model. Training models are stored in the dynamic neural function library of the artificial intelligent device.
Abstract: The present invention provides a system and method for controlling a device by recognizing voice commands through a spiking neural network. The system comprises a spiking neural adaptive processor receiving an input stream that is being forwarded from a microphone, a decimation filter and then an artificial cochlea. The spiking neural adaptive processor further comprises a first spiking neural network and a second spiking neural network. The first spiking neural network checks for voice activities in output spikes received from artificial cochlea. If any voice activity is detected, it activates the second spiking neural network and passes the output spike of the artificial cochlea to the second spiking neural network that is further configured to recognize spike patterns indicative of specific voice commands. If the first spiking neural network does not detect any voice activity, it halts the second spiking neural network.
Type:
Grant
Filed:
February 6, 2017
Date of Patent:
December 18, 2018
Assignee:
BrainChip Inc.
Inventors:
Peter A J van der Made, Mouna Elkhatib, Nicolas Yvan Oros