Patents Assigned to Breathe Technologies
  • Patent number: 11896766
    Abstract: A system for reducing airway obstructions of a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle, and at least one spontaneous respiration sensor in communication with the control unit for detecting a respiration effort pattern and a need for supporting airway patency. The system may be open to ambient. The control unit may determine more than one gas output velocities. The more than one gas output velocities may be synchronized with different parts of a spontaneous breath effort cycle, and a gas output velocity may be determined by a need for supporting airway patency.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: February 13, 2024
    Assignee: BREATHE TECHNOLOGIES, INC.
    Inventors: Gregory Kapust, Todd Allum, Anthony D. Wondka, Joseph Cipollone, Anthony Gerber, Darius Eghbal, Joey Aguirre, George A. Kassanis
  • Patent number: 11707591
    Abstract: A non-invasive ventilation system may include at least one outer tube with a proximal lateral end of the outer tube adapted to extend to a side of a nose. The at least one outer tube may also include a throat section. At least one coupler may be located at a distal section of the outer tube for impinging at least one nostril and positioning the at least one outer tube relative to the at least one nostril. At least one jet nozzle may be positioned within the outer tube at the proximal lateral end and in fluid communication with a pressurized gas supply. At least one opening in the distal section may be adapted to be in fluid communication with the nostril. At least one aperture in the at least one outer tube may be in fluid communication with ambient air. The at least one aperture may be in proximity to the at least one jet nozzle.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: July 25, 2023
    Assignee: Breathe Technologies, Inc.
    Inventors: Gregory Kapust, Todd Allum, Anthony D. Wondka, Joseph Cipollone, Joey Aguirre, Darius Eghbal, Anthony Gerber, Lutz Freitag
  • Patent number: 11654255
    Abstract: In accordance with the present invention, there is provided an adaptor or attachment which is suitable for integration into the patient circuit of a ventilation system, such as a non-invasive open ventilation system, is configured for attachment to any standard ventilation mask, and is outfitted with a jet pump which creates pressure and flow by facilitating the entrainment of ambient air. The adaptor comprises a base element and a nozzle element which are operatively coupled to each other. The base element further defines a throat and at least one entrainment port facilitating a path of fluid communication between the throat and ambient air. The nozzle element includes a jet nozzle, and a connector which is adapted to facilitate the fluid coupling of the nozzle element to a bi-lumen tube of the patient circuit. The connector includes both a delivery port and a sensing port.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: May 23, 2023
    Assignee: BREATHE TECHNOLOGIES, INC.
    Inventors: Enrico Bambrilla, Samir S. Ahmad
  • Patent number: 11642486
    Abstract: A portable oxygen concentrator retrofit system and method in which an existing portable oxygen concentrator may be retrofitted to output an enriched oxygen gas at a flow rate suitable for use in a patient ventilation system without the need for an external source of compressed gas.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: May 9, 2023
    Assignee: BREATHE TECHNOLOGIES, INC.
    Inventors: Tom Westfall, Enrico Brambilla
  • Patent number: 11607519
    Abstract: An oxygen concentrator includes one or more adsorbent sieve beds operable to remove nitrogen from air to produce concentrated oxygen gas at respective outlets thereof, a product tank fluidly coupled to the respective outlets of the sieve bed(s), a compressor operable to pressurize ambient air, one or more sieve bed flow paths from the compressor to respective inlets of the sieve bed(s), a bypass flow path from the compressor to the product tank that bypasses the sieve bed(s), and a valve unit operable to selectively allow flow of pressurized ambient air from the compressor along the one or more sieve bed flow paths and along the bypass flow path in response to a control signal. The valve unit may be controlled in response to a command issued by a ventilator based on a calculated or estimated total flow of gas and entrained air or % FiO2 of a patient.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: March 21, 2023
    Assignee: Breathe Technologies, Inc.
    Inventors: Tom Westfall, Enrico Brambilla
  • Patent number: 11478598
    Abstract: Modular ventilatory support systems and methods are disclosed in which a user may transition the system between a stationary configuration, an extended range configuration, and a stand-alone configuration. The modular components of the system include a compressor unit, a ventilator which may dock with the compressor unit, and a patient interface which may be connected to either the compressor unit or the ventilator unit. By rearranging these modular components into different configurations, mobility and duration of use may be optimized to fit the present needs. In the stationary configuration, mobility is most restricted, but duration of use is maximized. In the extended range configuration, mobility is enhanced, with duration of use limited by the battery power of the ventilator. In the stand-alone configuration, mobility is maximized, with duration of use limited by battery power of the ventilator and the quantity of an external gas supply.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: October 25, 2022
    Assignee: Breathe Technologies, Inc.
    Inventors: Samir S. Ahmad, Enrico Brambilla, Ali Nikkhah, Lawrence A. Mastrovich, Gary Berman, Masoud Vahidi
  • Patent number: 11154672
    Abstract: Systems and methods may include a gas source, a gas delivery circuit, and a nasal interface allowing breathing ambient air through the nasal interface. A gas flow path through the nasal interface may have a distal gas flow path opening. A nozzle may be associated with a proximal end of the nasal interface a distance from the distal end gas flow path opening. At least a portion of an entrainment port may be between the nozzle and the distal end gas flow opening. The nozzle may deliver gas into the nasal interface to create a negative pressure area in the gas flow path at the entrainment port. The nasal interface and the nozzle may create a positive pressure area between the entrainment port and the distal end gas flow path opening. Gas from the gas delivery source and air entrained through the entrainment port may increase airway pressure or lung pressure or provide ventilatory support.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: October 26, 2021
    Assignee: Breathe Technologies, Inc.
    Inventors: Todd Allum, Joey Aguirre, Joseph Cipollone, Darius Eghbal, Gregory Kapust, Anthony Wondka
  • Patent number: 11103667
    Abstract: A system for reducing airway obstructions of a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle, and at least one spontaneous respiration sensor in communication with the control unit for detecting a respiration effort pattern and a need for supporting airway patency. The system may be open to ambient. The control unit may determine more than one gas output velocities. The more than one gas output velocities may be synchronized with different parts of a spontaneous breath effort cycle, and a gas output velocity may be determined by a need for supporting airway patency.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: August 31, 2021
    Assignee: Breathe Technologies, Inc.
    Inventors: Gregory Kapust, Todd Allum, Anthony D. Wondka, Joseph Cipollone, Anthony Gerber, Darius Eghbal, Joey Aguirre, George A. Kassanis
  • Patent number: 10792449
    Abstract: A patient circuit of a ventilation system, such as a non-invasive open ventilation system, wherein the patient circuit comprises a nasal pillows style patient interface that incorporates at least one “Venturi effect” jet pump proximal to the patient. The patient circuit further comprises a pair of uniquely configured 3-way connectors which, in cooperation with several uniquely configured tri-lumen tubing segments, facilitate the cooperative engagement of the patient interface to a ventilator of the ventilation system.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: October 6, 2020
    Assignee: Breathe Technologies, Inc.
    Inventors: Enrico Brambilla, Samir Ahmad, Lawrence Mastrovich, Gary Berman, David Mastrovich
  • Patent number: 10709864
    Abstract: A non-invasive ventilation system may include at least one outer tube with a proximal lateral end of the outer tube adapted to extend to a side of a nose. The at least one outer tube may also include a throat section. At least one coupler may be located at a distal section of the outer tube for impinging at least one nostril and positioning the at least one outer tube relative to the at least one nostril. At least one jet nozzle may be positioned within the outer tube at the proximal lateral end and in fluid communication with a pressurized gas supply. At least one opening in the distal section may be adapted to be in fluid communication with the nostril. At least one aperture in the at least one outer tube may be in fluid communication with ambient air. The at least one aperture may be in proximity to the at least one jet nozzle.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: July 14, 2020
    Assignee: Breathe Technologies, Inc.
    Inventors: Gregory Kapust, Todd Allum, Anthony D. Wondka, Joseph Cipollone, Joey Aguirre, Darius Eghbal, Anthony Gerber, Lutz Freitag
  • Patent number: 10695519
    Abstract: A non-invasive ventilation system may include a nasal interface. The nasal interface may include a left outer tube with a left distal end adapted to impinge a left nostril, at least one left opening in the left distal end in pneumatic communication with the left nostril, and a left proximal end of the left outer tube in fluid communication with ambient air. The left proximal end of the left outer tube may curve laterally away from a midline of a face. A right outer tube may be similarly provided. One or more left jet nozzles may direct ventilation gas into the left outer tube, and one or more right jet nozzles may direct ventilation gas into the right outer tube. The jet nozzles may be in fluid communication with the pressurized gas supply.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: June 30, 2020
    Assignee: Breathe Technologies, Inc.
    Inventors: Anthony D. Wondka, Todd Allum, Joseph Cipollone, Gregory Kapust, Darius Eghbal, Joey Aguirre, Anthony Gerber
  • Patent number: 10576355
    Abstract: Apparatus (20) for use with a subject (30) is provided, including a memory, storing a set of computer instructions, the memory adapted to have stored therein an initial form of a multi-phase biorhythmic activity pattern and an indication of a desired form of the multi-phase biorhythmic activity pattern, wherein a ratio of durations of two phases in the desired form is different from a ratio of durations of the respective phases in the initial form, and wherein at least one phase of the multi-phase biorhythmic activity pattern corresponds to a respective phase of a multi-phase biorhythmic activity of the subject (30).
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: March 3, 2020
    Assignee: 2BREATHE TECHNOLOGIES LTD.
    Inventor: Benjamin Gavish
  • Patent number: 10531827
    Abstract: Apparatus is provided, including a sensor, adapted to generate a sensor signal indicative of biorhythmic activity of a user of the apparatus, the sensor signal having a first characteristic, indicative of a voluntary action of the user, and a second characteristic, indicative of a benefit-related variable of the user. The apparatus also includes a control unit, adapted to receive the sensor signal, and, responsive to the second characteristics generate an output signal which directs the user to modify a parameter of the voluntary action indicated by the first characteristic.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: January 14, 2020
    Assignee: 2BREATHE TECHNOLOGIES LTD.
    Inventor: Benjamin Gavish
  • Patent number: 10384023
    Abstract: A respiratory assistance device includes a patient interface for coupling to a patient respiratory passageway, and a selectively regulated therapeutic gas flow source in pneumatic communication with the patient over the patient interface. A ramping controller is connected to the therapeutic gas flow source and is receptive to inputs of a prescription pressure level, an initial pressure level, a total ramp duration, and a numeric value corresponding to a ramping duration. Therapeutic gas flow at an initial pressure level is regulated for a ramp delay duration reciprocal to the ramping duration relative to the total ramp duration. The ramping controller incrementally increases therapeutic gas flow to the prescription pressure level from a ramp start time to a ramp end time at a delivery pressure increase rate derived from the numeric value of the ramping duration and the total ramp duration.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: August 20, 2019
    Assignee: Breathe Technologies, Inc.
    Inventors: Leonardo Alberto, Samir S. Ahmad
  • Patent number: 10369320
    Abstract: Modular ventilatory support systems and methods are disclosed in which a user may transition the system between a stationary configuration, an extended range configuration, and a stand-alone configuration. The modular components of the system include a compressor unit, a ventilator which may dock with the compressor unit, and a patient interface which may be connected to either the compressor unit or the ventilator unit. By rearranging these modular components into different configurations, mobility and duration of use may be optimized to fit the present needs. In the stationary configuration, mobility is most restricted, but duration of use is maximized. In the extended range configuration, mobility is enhanced, with duration of use limited by the battery power of the ventilator. In the stand-alone configuration, mobility is maximized, with duration of use limited by battery power of the ventilator and the quantity of an external gas supply.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: August 6, 2019
    Assignee: Breathe Technologies, Inc.
    Inventors: Samir S. Ahmad, Enrico Brambilla, Ali Nikkhah, Lawrence A. Mastrovich, Gary Berman, Masoud Vahidi
  • Patent number: 10314535
    Abstract: Apparatus for improving health of a user is provided, including a first sensor, adapted to measure a first physiological variable, which is indicative of a voluntary action of the user. A second sensor is adapted to measure a second physiological variable, which is substantially governed by an autonomic nervous system of the user. Circuitry is adapted to receive respective first and second sensor signals from the first and second sensors, and, responsive thereto, to generate an output signal which directs the user to modify a parameter of the voluntary action.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: June 11, 2019
    Assignee: 2BREATHE TECHNOLOGIES LTD.
    Inventor: Benjamin Gavish
  • Patent number: 10307552
    Abstract: An adaptor comprises comprising a base element and a nozzle element which are operatively coupled to each other. The base element defines a throat and at least one entrainment port facilitating a path of fluid communication between the throat and ambient air. The nozzle element includes a jet nozzle, and a connector which is adapted to facilitate the fluid coupling of the nozzle element to a bi-lumen tube of the patient circuit. The connector includes both a delivery port and a sensing port. The jet nozzle and the delivery port collectively define a delivery line or lumen which fluidly communicates with the throat of the base element, and is placeable into fluid communication with the delivery lumen of the bi-lumen tube.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: June 4, 2019
    Assignee: Breathe Technologies, Inc.
    Inventors: Enrico Bambrilla, Samir S. Ahmad
  • Patent number: 10265486
    Abstract: Systems and methods may include a gas source, a gas delivery circuit, and a nasal interface allowing breathing ambient air through the nasal interface. A gas flow path through the nasal interface may have a distal gas flow path opening. A nozzle may be associated with a proximal end of the nasal interface a distance from the distal end gas flow path opening. At least a portion of an entrainment port may be between the nozzle and the distal end gas flow opening. The nozzle may deliver gas into the nasal interface to create a negative pressure area in the gas flow path at the entrainment port. The nasal interface and the nozzle may create a positive pressure area between the entrainment port and the distal end gas flow path opening. Gas from the gas delivery source and air entrained through the entrainment port may increase airway pressure or lung pressure or provide ventilatory support.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: April 23, 2019
    Assignee: Breathe Technologies, Inc.
    Inventors: Todd Allum, Joey Aguirre, Joseph Cipollone, Darius Eghbal, Gregory Kapust, Anthony Wondka
  • Patent number: 10252020
    Abstract: A respiratory support ventilator apparatus mechanically supports the work of respiration of a patient. The ventilator apparatus is highly portable and optionally wearable so as to promote mobility and physical activity of the patient, and to improve the overall health of the patient. The respiratory support ventilator may monitor a physical activity level and overall health status of the patient, and process this information. The information is used to track efficacy of the ventilation therapy relative to activity level and quality of life, and or to titrate or optimize the ventilation parameters to improve, maintain or optimize the physical activity level and overall health status of the patient.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: April 9, 2019
    Assignee: Breathe Technologies, Inc.
    Inventors: Anthony D. Wondka, Angela King, Joseph Cipollone
  • Patent number: 10232136
    Abstract: A system for reducing airway obstructions of a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle, and at least one spontaneous respiration sensor in communication with the control unit for detecting a respiration effort pattern and a need for supporting airway patency. The system may be open to ambient. The control unit may determine more than one gas output velocities. The more than one gas output velocities may be synchronized with different parts of a spontaneous breath effort cycle, and a gas output velocity may be determined by a need for supporting airway patency.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: March 19, 2019
    Assignee: Breathe Technologies, Inc.
    Inventors: Gregory Kapust, Todd Allum, Anthony D. Wondka, Joseph Cipollone, Anthony Gerber, Darius Eghbal, Joey Aguirre, George A. Kassanis