Patents Assigned to Breathe Technologies, Inc.
-
Patent number: 12102767Abstract: An oxygen concentrator includes one or more adsorbent sieve beds operable to remove nitrogen from air to produce concentrated oxygen gas at respective outlets thereof, a product tank fluidly coupled to the respective outlets of the sieve bed(s), a compressor operable to pressurize ambient air, one or more sieve bed flow paths from the compressor to respective inlets of the sieve bed(s), a bypass flow path from the compressor to the product tank that bypasses the sieve bed(s), and a valve unit operable to selectively allow flow of pressurized ambient air from the compressor along the one or more sieve bed flow paths and along the bypass flow path in response to a control signal. The valve unit may be controlled in response to a command issued by a ventilator based on a calculated or estimated total flow of gas and entrained air or % FiO2 of a patient.Type: GrantFiled: February 14, 2023Date of Patent: October 1, 2024Assignee: Breathe Technologies, Inc.Inventors: Tom Westfall, Enrico Brambilla
-
Patent number: 12048813Abstract: Systems and methods may include a gas source, a gas delivery circuit, and a nasal interface allowing breathing ambient air through the nasal interface. A gas flow path through the nasal interface may have a distal gas flow path opening. A nozzle may be associated with a proximal end of the nasal interface a distance from the distal end gas flow path opening. At least a portion of an entrainment port may be between the nozzle and the distal end gas flow opening. The nozzle may deliver gas into the nasal interface to create a negative pressure area in the gas flow path at the entrainment port. The nasal interface and the nozzle may create a positive pressure area between the entrainment port and the distal end gas flow path opening. Gas from the gas delivery source and air entrained through the entrainment port may increase airway pressure or lung pressure or provide ventilatory support.Type: GrantFiled: July 29, 2021Date of Patent: July 30, 2024Assignee: Breathe Technologies, Inc.Inventors: Todd Allum, Joey Aguirre, Joseph Cipollone, Darius Eghbal, Gregory Kapust, Anthony Wondka
-
Patent number: 12017002Abstract: A patient circuit of a ventilation system, such as a non-invasive open ventilation system, wherein the patient circuit comprises a nasal pillows style patient interface that incorporates at least one “Venturi effect” jet pump proximal to the patient. The patient circuit further comprises a pair of uniquely configured 3-way connectors which, in cooperation with several uniquely configured tri-lumen tubing segments, facilitate the cooperative engagement of the patient interface to a ventilator of the ventilation system.Type: GrantFiled: September 16, 2020Date of Patent: June 25, 2024Assignee: Breathe Technologies, Inc.Inventors: Enrico Brambilla, Samir Ahmad, Lawrence Mastrovich, Gary Berman, David Mastrovich
-
Patent number: 12005188Abstract: In accordance with the present invention, there is provided an adaptor or attachment which is suitable for integration into the patient circuit of a ventilation system, such as a non-invasive open ventilation system, is configured for attachment to any standard ventilation mask, and is outfitted with a jet pump which creates pressure and flow by facilitating the entrainment of ambient air. The adaptor comprises a base element and a nozzle element which are operatively coupled to each other. The base element further defines a throat and at least one entrainment port facilitating a path of fluid communication between the throat and ambient air. The nozzle element includes a jet nozzle, and a connector which is adapted to facilitate the fluid coupling of the nozzle element to a bi-lumen tube of the patient circuit. The connector includes both a delivery port and a sensing port.Type: GrantFiled: April 26, 2023Date of Patent: June 11, 2024Assignee: Breathe Technologies, Inc.Inventors: Enrico Bambrilla, Samir S. Ahmad
-
Patent number: 11896766Abstract: A system for reducing airway obstructions of a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle, and at least one spontaneous respiration sensor in communication with the control unit for detecting a respiration effort pattern and a need for supporting airway patency. The system may be open to ambient. The control unit may determine more than one gas output velocities. The more than one gas output velocities may be synchronized with different parts of a spontaneous breath effort cycle, and a gas output velocity may be determined by a need for supporting airway patency.Type: GrantFiled: July 27, 2021Date of Patent: February 13, 2024Assignee: BREATHE TECHNOLOGIES, INC.Inventors: Gregory Kapust, Todd Allum, Anthony D. Wondka, Joseph Cipollone, Anthony Gerber, Darius Eghbal, Joey Aguirre, George A. Kassanis
-
Patent number: 11707591Abstract: A non-invasive ventilation system may include at least one outer tube with a proximal lateral end of the outer tube adapted to extend to a side of a nose. The at least one outer tube may also include a throat section. At least one coupler may be located at a distal section of the outer tube for impinging at least one nostril and positioning the at least one outer tube relative to the at least one nostril. At least one jet nozzle may be positioned within the outer tube at the proximal lateral end and in fluid communication with a pressurized gas supply. At least one opening in the distal section may be adapted to be in fluid communication with the nostril. At least one aperture in the at least one outer tube may be in fluid communication with ambient air. The at least one aperture may be in proximity to the at least one jet nozzle.Type: GrantFiled: May 8, 2020Date of Patent: July 25, 2023Assignee: Breathe Technologies, Inc.Inventors: Gregory Kapust, Todd Allum, Anthony D. Wondka, Joseph Cipollone, Joey Aguirre, Darius Eghbal, Anthony Gerber, Lutz Freitag
-
Patent number: 11654255Abstract: In accordance with the present invention, there is provided an adaptor or attachment which is suitable for integration into the patient circuit of a ventilation system, such as a non-invasive open ventilation system, is configured for attachment to any standard ventilation mask, and is outfitted with a jet pump which creates pressure and flow by facilitating the entrainment of ambient air. The adaptor comprises a base element and a nozzle element which are operatively coupled to each other. The base element further defines a throat and at least one entrainment port facilitating a path of fluid communication between the throat and ambient air. The nozzle element includes a jet nozzle, and a connector which is adapted to facilitate the fluid coupling of the nozzle element to a bi-lumen tube of the patient circuit. The connector includes both a delivery port and a sensing port.Type: GrantFiled: June 3, 2019Date of Patent: May 23, 2023Assignee: BREATHE TECHNOLOGIES, INC.Inventors: Enrico Bambrilla, Samir S. Ahmad
-
Patent number: 11642486Abstract: A portable oxygen concentrator retrofit system and method in which an existing portable oxygen concentrator may be retrofitted to output an enriched oxygen gas at a flow rate suitable for use in a patient ventilation system without the need for an external source of compressed gas.Type: GrantFiled: April 29, 2020Date of Patent: May 9, 2023Assignee: BREATHE TECHNOLOGIES, INC.Inventors: Tom Westfall, Enrico Brambilla
-
Patent number: 11607519Abstract: An oxygen concentrator includes one or more adsorbent sieve beds operable to remove nitrogen from air to produce concentrated oxygen gas at respective outlets thereof, a product tank fluidly coupled to the respective outlets of the sieve bed(s), a compressor operable to pressurize ambient air, one or more sieve bed flow paths from the compressor to respective inlets of the sieve bed(s), a bypass flow path from the compressor to the product tank that bypasses the sieve bed(s), and a valve unit operable to selectively allow flow of pressurized ambient air from the compressor along the one or more sieve bed flow paths and along the bypass flow path in response to a control signal. The valve unit may be controlled in response to a command issued by a ventilator based on a calculated or estimated total flow of gas and entrained air or % FiO2 of a patient.Type: GrantFiled: May 14, 2020Date of Patent: March 21, 2023Assignee: Breathe Technologies, Inc.Inventors: Tom Westfall, Enrico Brambilla
-
Patent number: 11478598Abstract: Modular ventilatory support systems and methods are disclosed in which a user may transition the system between a stationary configuration, an extended range configuration, and a stand-alone configuration. The modular components of the system include a compressor unit, a ventilator which may dock with the compressor unit, and a patient interface which may be connected to either the compressor unit or the ventilator unit. By rearranging these modular components into different configurations, mobility and duration of use may be optimized to fit the present needs. In the stationary configuration, mobility is most restricted, but duration of use is maximized. In the extended range configuration, mobility is enhanced, with duration of use limited by the battery power of the ventilator. In the stand-alone configuration, mobility is maximized, with duration of use limited by battery power of the ventilator and the quantity of an external gas supply.Type: GrantFiled: June 24, 2019Date of Patent: October 25, 2022Assignee: Breathe Technologies, Inc.Inventors: Samir S. Ahmad, Enrico Brambilla, Ali Nikkhah, Lawrence A. Mastrovich, Gary Berman, Masoud Vahidi
-
Patent number: 11154672Abstract: Systems and methods may include a gas source, a gas delivery circuit, and a nasal interface allowing breathing ambient air through the nasal interface. A gas flow path through the nasal interface may have a distal gas flow path opening. A nozzle may be associated with a proximal end of the nasal interface a distance from the distal end gas flow path opening. At least a portion of an entrainment port may be between the nozzle and the distal end gas flow opening. The nozzle may deliver gas into the nasal interface to create a negative pressure area in the gas flow path at the entrainment port. The nasal interface and the nozzle may create a positive pressure area between the entrainment port and the distal end gas flow path opening. Gas from the gas delivery source and air entrained through the entrainment port may increase airway pressure or lung pressure or provide ventilatory support.Type: GrantFiled: April 5, 2019Date of Patent: October 26, 2021Assignee: Breathe Technologies, Inc.Inventors: Todd Allum, Joey Aguirre, Joseph Cipollone, Darius Eghbal, Gregory Kapust, Anthony Wondka
-
Patent number: 11103667Abstract: A system for reducing airway obstructions of a patient may include a ventilator, a control unit, a gas delivery circuit with a proximal end in fluid communication with the ventilator and a distal end in fluid communication with a nasal interface, and a nasal interface. The nasal interface may include at least one jet nozzle, and at least one spontaneous respiration sensor in communication with the control unit for detecting a respiration effort pattern and a need for supporting airway patency. The system may be open to ambient. The control unit may determine more than one gas output velocities. The more than one gas output velocities may be synchronized with different parts of a spontaneous breath effort cycle, and a gas output velocity may be determined by a need for supporting airway patency.Type: GrantFiled: March 5, 2019Date of Patent: August 31, 2021Assignee: Breathe Technologies, Inc.Inventors: Gregory Kapust, Todd Allum, Anthony D. Wondka, Joseph Cipollone, Anthony Gerber, Darius Eghbal, Joey Aguirre, George A. Kassanis
-
Patent number: 10792449Abstract: A patient circuit of a ventilation system, such as a non-invasive open ventilation system, wherein the patient circuit comprises a nasal pillows style patient interface that incorporates at least one “Venturi effect” jet pump proximal to the patient. The patient circuit further comprises a pair of uniquely configured 3-way connectors which, in cooperation with several uniquely configured tri-lumen tubing segments, facilitate the cooperative engagement of the patient interface to a ventilator of the ventilation system.Type: GrantFiled: October 3, 2017Date of Patent: October 6, 2020Assignee: Breathe Technologies, Inc.Inventors: Enrico Brambilla, Samir Ahmad, Lawrence Mastrovich, Gary Berman, David Mastrovich
-
Patent number: 10709864Abstract: A non-invasive ventilation system may include at least one outer tube with a proximal lateral end of the outer tube adapted to extend to a side of a nose. The at least one outer tube may also include a throat section. At least one coupler may be located at a distal section of the outer tube for impinging at least one nostril and positioning the at least one outer tube relative to the at least one nostril. At least one jet nozzle may be positioned within the outer tube at the proximal lateral end and in fluid communication with a pressurized gas supply. At least one opening in the distal section may be adapted to be in fluid communication with the nostril. At least one aperture in the at least one outer tube may be in fluid communication with ambient air. The at least one aperture may be in proximity to the at least one jet nozzle.Type: GrantFiled: September 29, 2015Date of Patent: July 14, 2020Assignee: Breathe Technologies, Inc.Inventors: Gregory Kapust, Todd Allum, Anthony D. Wondka, Joseph Cipollone, Joey Aguirre, Darius Eghbal, Anthony Gerber, Lutz Freitag
-
Patent number: 10695519Abstract: A non-invasive ventilation system may include a nasal interface. The nasal interface may include a left outer tube with a left distal end adapted to impinge a left nostril, at least one left opening in the left distal end in pneumatic communication with the left nostril, and a left proximal end of the left outer tube in fluid communication with ambient air. The left proximal end of the left outer tube may curve laterally away from a midline of a face. A right outer tube may be similarly provided. One or more left jet nozzles may direct ventilation gas into the left outer tube, and one or more right jet nozzles may direct ventilation gas into the right outer tube. The jet nozzles may be in fluid communication with the pressurized gas supply.Type: GrantFiled: April 2, 2010Date of Patent: June 30, 2020Assignee: Breathe Technologies, Inc.Inventors: Anthony D. Wondka, Todd Allum, Joseph Cipollone, Gregory Kapust, Darius Eghbal, Joey Aguirre, Anthony Gerber
-
Patent number: 10384023Abstract: A respiratory assistance device includes a patient interface for coupling to a patient respiratory passageway, and a selectively regulated therapeutic gas flow source in pneumatic communication with the patient over the patient interface. A ramping controller is connected to the therapeutic gas flow source and is receptive to inputs of a prescription pressure level, an initial pressure level, a total ramp duration, and a numeric value corresponding to a ramping duration. Therapeutic gas flow at an initial pressure level is regulated for a ramp delay duration reciprocal to the ramping duration relative to the total ramp duration. The ramping controller incrementally increases therapeutic gas flow to the prescription pressure level from a ramp start time to a ramp end time at a delivery pressure increase rate derived from the numeric value of the ramping duration and the total ramp duration.Type: GrantFiled: August 3, 2012Date of Patent: August 20, 2019Assignee: Breathe Technologies, Inc.Inventors: Leonardo Alberto, Samir S. Ahmad
-
Patent number: 10369320Abstract: Modular ventilatory support systems and methods are disclosed in which a user may transition the system between a stationary configuration, an extended range configuration, and a stand-alone configuration. The modular components of the system include a compressor unit, a ventilator which may dock with the compressor unit, and a patient interface which may be connected to either the compressor unit or the ventilator unit. By rearranging these modular components into different configurations, mobility and duration of use may be optimized to fit the present needs. In the stationary configuration, mobility is most restricted, but duration of use is maximized. In the extended range configuration, mobility is enhanced, with duration of use limited by the battery power of the ventilator. In the stand-alone configuration, mobility is maximized, with duration of use limited by battery power of the ventilator and the quantity of an external gas supply.Type: GrantFiled: January 20, 2017Date of Patent: August 6, 2019Assignee: Breathe Technologies, Inc.Inventors: Samir S. Ahmad, Enrico Brambilla, Ali Nikkhah, Lawrence A. Mastrovich, Gary Berman, Masoud Vahidi
-
Patent number: 10307552Abstract: An adaptor comprises comprising a base element and a nozzle element which are operatively coupled to each other. The base element defines a throat and at least one entrainment port facilitating a path of fluid communication between the throat and ambient air. The nozzle element includes a jet nozzle, and a connector which is adapted to facilitate the fluid coupling of the nozzle element to a bi-lumen tube of the patient circuit. The connector includes both a delivery port and a sensing port. The jet nozzle and the delivery port collectively define a delivery line or lumen which fluidly communicates with the throat of the base element, and is placeable into fluid communication with the delivery lumen of the bi-lumen tube.Type: GrantFiled: September 6, 2013Date of Patent: June 4, 2019Assignee: Breathe Technologies, Inc.Inventors: Enrico Bambrilla, Samir S. Ahmad
-
Patent number: 10265486Abstract: Systems and methods may include a gas source, a gas delivery circuit, and a nasal interface allowing breathing ambient air through the nasal interface. A gas flow path through the nasal interface may have a distal gas flow path opening. A nozzle may be associated with a proximal end of the nasal interface a distance from the distal end gas flow path opening. At least a portion of an entrainment port may be between the nozzle and the distal end gas flow opening. The nozzle may deliver gas into the nasal interface to create a negative pressure area in the gas flow path at the entrainment port. The nasal interface and the nozzle may create a positive pressure area between the entrainment port and the distal end gas flow path opening. Gas from the gas delivery source and air entrained through the entrainment port may increase airway pressure or lung pressure or provide ventilatory support.Type: GrantFiled: July 9, 2015Date of Patent: April 23, 2019Assignee: Breathe Technologies, Inc.Inventors: Todd Allum, Joey Aguirre, Joseph Cipollone, Darius Eghbal, Gregory Kapust, Anthony Wondka
-
Patent number: 10252020Abstract: A respiratory support ventilator apparatus mechanically supports the work of respiration of a patient. The ventilator apparatus is highly portable and optionally wearable so as to promote mobility and physical activity of the patient, and to improve the overall health of the patient. The respiratory support ventilator may monitor a physical activity level and overall health status of the patient, and process this information. The information is used to track efficacy of the ventilation therapy relative to activity level and quality of life, and or to titrate or optimize the ventilation parameters to improve, maintain or optimize the physical activity level and overall health status of the patient.Type: GrantFiled: October 1, 2009Date of Patent: April 9, 2019Assignee: Breathe Technologies, Inc.Inventors: Anthony D. Wondka, Angela King, Joseph Cipollone