Patents Assigned to British Columbia Cancer Agency Branch
  • Patent number: 11779550
    Abstract: Compounds having a structure of Formula I: or a pharmaceutically acceptable salt, tautomer or stereoisomer thereof, wherein R1, R2, L1, L2, L3, X, a, b, c, n, and m are as defined herein, are provided. Uses of such compounds for modulating androgen receptor activity and uses as therapeutics as well as methods for treatment of subjects in need thereof, including prostate cancer are also provided.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: October 10, 2023
    Assignees: The University of British Columbia, British Columbia Cancer Agency Branch
    Inventors: Raymond John Andersen, Kunzhong Jian, Marianne Dorothy Sadar, Nasrin R. Mawji, Carmen Adriana Banuelos
  • Patent number: 11725248
    Abstract: The present invention provides methods of determining a survival predictor score of a subject having mantle cell lymphoma (MCL). The present invention also provides methods of predicting the survival outcome of a subject having MCL and provides methods of selecting a treatment for a subject having MCL.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: August 15, 2023
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, British Columbia Cancer Agency Branch, Julius-Maximilians-University of Würzburg, Oregon Health & Science University, Hospital Clinic de Barcelona, Universitat de Barcelona, Oslo University Hospital HF, The Cleveland Clinic Foundation, Mayo Foundation for Medical Education and Research
    Inventors: Louis M. Staudt, David William Scott, George W. Wright, Andreas Rosenwald, Pau Abrisqueta, Rita Braziel, Elias Campo Guerri, Wing C. Chan, Joseph M. Connors, Jan Delabie, Diego Villa, Kai Fu, Randy D. Gascoyne, Timothy Greiner, Elaine S. Jaffe, Pedro Jares, Anja Mottok, German Ott, Lisa M. Rimsza, Graham Slack, Dennis Weisenburger, Erlend B. Smeland, James Robert Cook
  • Patent number: 11574704
    Abstract: The invention is directed to methods for selecting a treatment option for an activated B cell-like diffuse large B cell lymphoma (ABC DLBCL) subject, a germinal center B cell-like diffuse large B cell lymphoma (GCB DLBCL) subject, a primary mediastinal B cell lymphoma (PMBL) subject, a Burkitt lymphoma (BL) subject, or a mantle cell lymphoma (MCL) subject by analyzing digital gene expression data obtained from the subject, e.g., from a biopsy sample.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: February 7, 2023
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, British Columbia Cancer Agency Branch, Arizona Board of Regents on Behalf of the University of Arizona, Universitat de Barcelona, Hospital Clinic de Barcelona
    Inventors: Louis M. Staudt, George W. Wright, David William Scott, Joseph M. Connors, Randy D. Gascoyne, Lisa Rimsza, Elias Campo Guerri, Raymond Tubbs, Timothy C. Greiner, James Robert Cook, Kai Fu, Paul Michael Williams, Chih-Jian Lih, Elaine S. Jaffe, Rita M. Braziel, Andreas Rosenwald, Erlend B. Smeland, Wing C. Chan, German Ott, Jan Delabie, Dennis Weisenburger
  • Patent number: 11529148
    Abstract: Devices for treating a bone and methods of inserting such devices into a bone are disclosed. A device for treating a bone may include a flexible tube, a stiffening mechanism and an actuator. The flexible tube has a distal end and a proximal end. The stiffening mechanism within the flexible tube is configured to cause the flexible tube to become rigid. The actuator is configured to cause the stiffening mechanism to cause the flexible tube to become rigid in response to the actuator being actuated.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: December 20, 2022
    Assignees: The University of British Columbia, British Columbia Cancer Agency Branch
    Inventors: Robert Meek, Qingan Zhu, Timothy Schwab, Robin John Noel Coope, Jared Slobodan, Scott Young
  • Patent number: 11419645
    Abstract: Implantable devices for fixation of curved bones such as the pelvic ring pubic symphysis and acetabulum, and methods for the use of the devices are disclosed. The implantable devices are convertible between a flexible state and a rigid state using a shape locking section. The implantable devices further include a main body and a distal bone interface. In a flexible state, the devices may be inserted along, and conform to a curved pathway, and in the rigid state, the devices may support the mechanical loads required to fixate a fracture.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: August 23, 2022
    Assignees: University of British Columbia, British Columbia Cancer Agency Branch
    Inventors: David Thomas Stinson, Carly Anderson Thaler
  • Patent number: 11369421
    Abstract: Implantable devices for fixation of curved bone such as the pelvic ring pubic symphysis and acetabulum, and methods for the use of the devices are disclosed. The implantable devices are convertible between a flexible state and a rigid state, and include an elongate structure having a proximal bone interface, a main body, and a distal bone interface. In a flexible state, the devices may be inserted along, and conform to a curved pathway, and in the rigid state, the devices may support the mechanical loads required to fixate a fracture.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: June 28, 2022
    Assignee: The University of British Columbia and British Columbia Cancer Agency Branch
    Inventors: Edward Scott Harshman, Steven Charles Dimmer, Daniel Reed Baker, David Thomas Stinson, Robert N. Meek, Robin John Noel Coope, Lok Tin Lam
  • Patent number: 11345670
    Abstract: Compounds having a structure of Formula I: or a pharmaceutically acceptable salt, tautomer or stereoisomer thereof, wherein R1, R2, R3, R11a, R11b, R11c, R11d, X, n1, n2, and n3 are as defined herein, are provided. Uses of such compounds for modulating androgen receptor activity, imaging diagnostics in cancer and therapeutics, and methods for treatment of subjects in need thereof, including prostate cancer are also provided.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: May 31, 2022
    Assignees: The University of British Columbia, British Columbia Cancer Agency Branch
    Inventors: Raymond John Andersen, Javier Garcia Fernandez, Kunzhong Jian, Marianne Dorothy Sadar, Nasrin R. Mawji, Carmen Adriana Banuelos
  • Patent number: 11326212
    Abstract: The disclosure provides a method of identifying a subject as having B-cell non-Hodgkin lymphoma (NHL) such as testing a sample from a subject for a mutation in one or more biomarkers. Also described are methods for classifying or monitoring a subject having, or suspected of having, B-cell non-Hodgkin lymphoma comprising testing the sample for a mutation in one or more biomarkers.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: May 10, 2022
    Assignee: British Columbia Cancer Agency Branch
    Inventors: Ryan D. Morin, Marco A. Marra, Andrew J. Mungall, Martin Hirst, Maria Mendez-Lago, Randy D. Gascoyne, Joseph M. Connors
  • Publication number: 20210220027
    Abstract: Systems and methods for intermedullary bone fracture fixation are described herein. The fixation device includes a main body having a flexible state and a rigid state. The fixation device further includes a proximal interface coupled to a proximal end of the main body to anchor the fixation device to an exterior surface of the bone and a distal interface coupled to a distal end of the main body to anchor the fixation device to an interior cavity of the bone. The fixation device further includes a locking interface to configured to convert the main body from the flexible state to the rigid state.
    Type: Application
    Filed: April 8, 2021
    Publication date: July 22, 2021
    Applicants: The University of British Columbia, British Columbia Cancer Agency Branch
    Inventors: Edward Scott HARSHMAN, Steven Charles DIMMER, David Thomas STINSON
  • Patent number: 11028444
    Abstract: The invention provides methods and materials related to a gene expression-based survival predictor for DLBCL patients.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: June 8, 2021
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, Arizona Board of Regents on behalf of the University of Arizona, Queen Mary University of London, Board of Regents of the University of Nebraska, Oslo University Hospital HF, Oregon Health & Science University, University of Rochester, Hospital Clinic de Barcelona, Universitat de Barcelona, British Columbia Cancer Agency Branch, Julius-Maximilians-University of Würzburg
    Inventors: Lisa M. Rimsza, Andrew T. Lister, Wing C. Chan, Dennis Weisenburger, Jan Delabie, Erlend B. Smeland, Harald Holte, Stein Kvaløy, Rita M. Braziel, Richard I. Fisher, Pedro Jares, Armando Lopez-Guillermo, Elias Campo Guerri, Elaine S. Jaffe, Georg Lenz, Wyndham H. Wilson, George W. Wright, Sandeep S. Dave, Louis M. Staudt, Randy D. Gascoyne, Joseph M. Connors, Hans-Konrad Muller-Hermelink, Andreas Rosenwald, German Ott
  • Patent number: 10973559
    Abstract: Systems and methods for intermedullary bone fracture fixation are described herein. The fixation device includes a main body having a flexible state and a rigid state. The fixation device further includes a proximal interface coupled to a proximal end of the main body to anchor the fixation device to an exterior surface of the bone and a distal interface coupled to a distal end of the main body to anchor the fixation device to an interior cavity of the bone. The fixation device further includes a locking interface to configured to convert the main body from the flexible state to the rigid state.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: April 13, 2021
    Assignees: University of British Columbia, British Columbia Cancer Agency Branch
    Inventors: Edward Scott Harshman, Steven Charles Dimmer, David Thomas Stinson
  • Patent number: 10941209
    Abstract: Methods are provided for diagnosing and treating a blood cancer or a myelodysplastic syndrome in a subject. Associated compositions and kits therefor are also provided.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: March 9, 2021
    Assignees: Albert Einstein College of Medicine, British Columbia Cancer Agency Branch
    Inventors: Ulrich Steidl, Christian Steidl, Ujunwa Cynthia Okoye-Okafor
  • Patent number: 10697975
    Abstract: Gene expression data provides a basis for more accurate identification and diagnosis of lymphoproliferative disorders. In addition, gene expression data can be used to develop more accurate predictors of survival. The present invention discloses methods for identifying, diagnosing, and predicting survival in a lymphoma or lymphoproliferative disorder on the basis of gene expression patterns. The invention discloses a novel microarray, the Lymph Dx microarray, for obtaining gene expression data from a lymphoma sample. The invention also discloses a variety of methods for utilizing lymphoma gene expression data to determine the identity of a particular lymphoma and to predict survival in a subject diagnosed with a particular lymphoma. This information will be useful in developing the therapeutic approach to be used with a particular subject.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: June 30, 2020
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, Board of Regents of the University of Nebraska, University of Rochester, Arizona Board of Regents on behalf of the University of Arizona, Universitat de Barcelona, Fundacio Clinic, Hospital Clinic de Barcelona, Julius-Maximilians-University of Würzburg, British Columbia Cancer Agency Branch, Oslo University Hospital HF, Queen Mary and Westfield College, University of London
    Inventors: Louis M. Staudt, George Wright, Sandeep Dave, Bruce Tan, John I. Powell, Wyndham Wilson, Elaine S. Jaffe, Wing C. Chan, Timothy C. Greiner, Dennis Weisenburger, James Armitage, Kai Fu, Richard I. Fisher, Lisa M. Rimsza, Thomas Miller, Thomas Grogan, Elias Campo Guerri, Silvia M. Bea, Itziar Salaverria, Armando Lopez-Guillermo, Emilio Montserrat, Victor Moreno, Andreas Zettl, German Ott, Hans-Konrad Muller-Hermelink, Andreas Rosenwald, Julie Vose, Randy Gascoyne, Joseph Connors, Erlend B. Smeland, Stein Kvaloy, Harald Holte, Jan Delabie, T. Andrew Lister
  • Patent number: 10654811
    Abstract: Compounds having a structure of Formula I: or a pharmaceutically acceptable salt, tautomer or stereoisomer thereof, wherein R1, R2, R3, R11a, R11b, R11c, R11d, X, n1, n2, and n3 are as defined herein, are provided. Uses of such compounds for modulating androgen receptor activity, imaging diagnostics in cancer and therapeutics, and methods for treatment of subjects in need thereof, including prostate cancer are also provided.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: May 19, 2020
    Assignees: The University of British Columbia, British Columbia Cancer Agency Branch
    Inventors: Raymond John Andersen, Javier Garcia Fernandez, Kunzhong Jian, Marianne Dorothy Sadar, Nasrin R. Mawji, Carmen Adriana Banuelos
  • Publication number: 20200143906
    Abstract: The invention is directed to methods for selecting a treatment option for an activated B cell-like diffuse large B cell lymphoma (ABC DLBCL) subject, a germinal center B cell-like diffuse large B cell lymphoma (GCB DLBCL) subject, a primary mediastinal B cell lymphoma (PMBL) subject, a Burkitt lymphoma (BL) subject, or a mantle cell lymphoma (MCL) subject by analyzing digital gene expression data obtained from the subject, e.g., from a biopsy sample.
    Type: Application
    Filed: January 17, 2020
    Publication date: May 7, 2020
    Applicants: The United States of America,as represented by the Secretary,Department of Health and Human Services, British Columbia Cancer Agency Branch, Arizona Board of Regents on Behalf of the University of Arizona, Universitat de Barcelona, Hospital Clinic de Barcelona, The Cleveland Clinic Foundation, Board of Regents of the University of Nebraska, Oregon Health & Science University, Julius-Maximilians-University of Würzburg, Oslo University Hospital HF
    Inventors: Louis M. Staudt, George W. Wright, David William Scott, Joseph M. Connors, Randy D. Gascoyne, Lisa Rimsza, Elias Campo Guerri, Raymond Tubbs (Deceased), Timothy C. Greiner, James Robert Cook, Kai Fu, Paul Michael Williams, Chih-Jian Lih, Elaine S. Jaffe, Rita M. Braziel, Andreas Rosenwald, Erlend B. Smeland, Wing C. Chan, German Ott, Jan Delabie, Dennis Weisenburger
  • Patent number: 10627411
    Abstract: The present invention is a method for determining the identity of the epitopes recognized by T-cells. The method consists of expressing an encoded library of candidate epitope sequences in a recipient reporter cell capable of providing a detectable signal upon cytotoxic attack from a single cognate T-cell followed by contacting the reporter cells with T-cells of interest. The reporter cells with a single indicating cytotoxic attack from a T-cell are isolated and then analyzed by next-generation sequencing in order to identify the epitope sequences. Specifically disclosed is a method in which a library of candidate epitope-encoding nucleic acids are expressed in cells which feature a membrane-bound major histocompatibility complex (MHC) protein, said library produced by transfection of plasmids featuring both a nucleotide encoding the candidate epitope and a nucleotide encoding a FRET-based fluorescent protein cleaved by granzyme.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: April 21, 2020
    Assignee: British Columbia Cancer Agency Branch
    Inventors: Robert Holt, Govinda Sharma
  • Publication number: 20200105364
    Abstract: In embodiments of the invention, the invention provides a method for distinguishing between lymphoma types based on gene expression measurements. In embodiments, the invention distinguishes between PMBCL and DLBCL based on gene expression signatures, and can further distinguish between DLBCL subtypes. In embodiments of the invention, the distinctions are used in methods of treatment.
    Type: Application
    Filed: December 13, 2019
    Publication date: April 2, 2020
    Applicants: The United States of America,as represented by the Secretary,Department of Health and Human Services, British Columbia Cancer Agency Branch, Mayo Foundation for Medical Education and Research, Julius-Maximilians-University of Würzburg, Board of Regents of the University of Nebraska, Oslo University Hospital HF, Hospital Clinic de Barcelona, Universitat de Barcelona, Institut D? Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Robert Bosch Gesellschaft fuer medizinische Forschung mbH, Oregon Health & Science University, City of Hope, The Cleveland Clinic Foundation
    Inventors: Louis M. Staudt, Christian Steidl, Anja Mottok, George W. Wright, David William Scott, Lisa M. Rimsza, Andreas Rosenwald, Randy Gascoyne, Timothy Greiner, Dennis Weisenburger, Erlend B. Smeland, Jan Delabie, Elias Campo Guerri, German Ott, Rita Braziel, Elaine S. Jaffe, Kai Fu, Wing C. Chan, Joo Song, James R. Cook
  • Patent number: 10607717
    Abstract: The invention is directed to methods for selecting a treatment option for an activated B cell-like diffuse large B cell lymphoma (ABC DLBCL) subject, a germinal center B cell-like diffuse large B cell lymphoma (GCB DLBCL) subject, a primary mediastinal B cell lymphoma (PMBL) subject, a Burkitt lymphoma (BL) subject, or a mantle cell lymphoma (MCL) subject by analyzing digital gene expression data obtained from the subject, e.g., from a biopsy sample.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: March 31, 2020
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, British Columbia Cancer Agency Branch, Arizona Board of Regents on behalf of the University of Arizona, Universitat de Barcelona, Hospital Clinic de Barcelona, The Cleveland Clinic Foundation, Board of Regents of the University of Nebraska, Oregon Health and Science University, Julius-Maximilians-University of Würzburg, Oslo University Hospital HF
    Inventors: Louis M. Staudt, George W. Wright, David William Scott, Joseph M. Connors, Randy D. Gascoyne, Lisa Rimsza, Elias Campo Guerri, Raymond Tubbs, Timothy C. Greiner, James Robert Cook, Kai Fu, Paul Michael Williams, Chih-Jian Lih, Elaine S. Jaffe, Rita M. Braziel, Andreas Rosenwald, Erlend B. Smeland, Wing C. Chan, German Ott, Jan Delabie, Dennis Weisenburger
  • Patent number: 10583267
    Abstract: Adverse effects of pain in a premature infant, especially a very or extremely premature infant may be ameliorated by exposing the infant to stimuli comprising one or more of vertical oscillating motion simulating breathing, skin contact with an interface that mimics human skin and exposure to sounds and/or vibrations that simulate heartbeats. A device including a movable platform provides such stimuli within a neonatal intensive care incubator. The device provides simulated maternal breathing through vertical movement at a rate and speed similar to that experienced by an infant lying upon its mother's chest. It further provides simulated maternal skin interface feel as well as heartbeat sound. These simulated sensory parameters appear to have an innate calming effect upon a preterm infant that reduces the duration and severity of the infant's response to a pain event. The same stimulations may reduce occurrence of below-baseline fluctuations of brain blood oxygen content.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: March 10, 2020
    Assignee: British Columbia Cancer Agency Branch
    Inventors: Liisa Holsti, Karon MacLean, Henry Voss
  • Publication number: 20200054372
    Abstract: Implantable devices for fixation of curved bones such as the pelvic ring pubic symphysis and acetabulum, and methods for the use of the devices are disclosed. The implantable devices are convertible between a flexible state and a rigid state using a shape locking section. The implantable devices further include a main body and a distal bone interface. In a flexible state, the devices may be inserted along, and conform to a curved pathway, and in the rigid state, the devices may support the mechanical loads required to fixate a fracture.
    Type: Application
    Filed: October 5, 2017
    Publication date: February 20, 2020
    Applicants: University of British Columbia, British Columbia Cancer Agency Branch
    Inventors: David Thomas STINSON, Carly Anderson THALER