Abstract: Presented herein are systems, methods, and apparatus for real-time high definition television encoding. In one embodiment, there is a method for encoding video data. The method comprises downscaling at least one original reference picture; classifying the content of the macroblocks of the picture; and selecting a spatial prediction mode for each of the macroblocks of the picture based on the content classification. If it is determined that a macroblock is to be coded using spatial encoding, the macroblock is coded using the associated prediction mode.
Abstract: One embodiment provides an EPON for transporting RF signals. The system includes a reference clock, an ONU, and an OLT. The ONU includes a mechanism for receiving a frequency and phase-reference signal from the OLT, a mechanism for receiving an RF signal, an ADC for converting the RF signal into a digital signal using a sampling signal associated with the frequency and phase-reference signal, a mechanism for assembling at least a portion of the digital signal into a packet, a mechanism configured to timestamp the packet, and an optical transceiver. The OLT includes a mechanism for receiving the packet, a buffer, a delay mechanism configured to delay reading the received packet from the buffer for a predetermined amount of time, and a DAC for converting the digital signal included in the packet back to RF domain using a clock signal associated with the frequency and phase-reference signal.
Abstract: A physical coding sublayer (PCS) transmitter circuit generates a plurality of encoded symbols according to a transmission standard. A symbol skewer skews the plurality of encoded symbols within a symbol clock time. A physical coding sublayer (PCS) receiver core circuit decodes a plurality of symbols based on encoding parameters. The symbols are transmitted using the encoding parameters according to a transmission standard. The received symbols are skewed within a symbol clock time by respective skew intervals. A PCS receiver encoder generator generates the encoding parameters.
Abstract: A method and system are provided for sharing AV/record resources in a programmable transport/demultiplexer and personal video recorder (PVR) engine. The method may involve utilizing hardware assist architecture to partially process incoming packets, retrieve information about the packets, and write the retrieved information to a memory. A processor programmed with firmware may then utilize the information in memory to perform further processing on the packet data. The processor programmed with firmware may then set up configuration parameters that may be used by the hardware assist architecture to further process the packet. The parameters may be configured such that they may be independent of the format of the packet, where the hardware assist architecture functions may be utilized for processing packets regardless of their format. The system may comprise the hardware assist architecture, the processor programmed with firmware, and a memory.
Abstract: A wireless device for implementing Incremental Redundancy (IR) operations includes an IR memory dedicated to storing data related to the IR operations. The IR memory includes a Type I IR memory adapted to store IR status information of a Radio Link Control (RLC) data block and a Type II IR memory adapted to store the RLC data block.
Abstract: Transmitting streamed video to at least one wireless terminal by a wireless network having a channel frequency reuse pattern. The wireless network receives a request for the streamed video from the at least one wireless terminal and receives position information from the at least one wireless terminal requesting the streamed video. The wireless network selects a transceiving device to service transmission of the streamed video to the at least one wireless terminal. The transceiving device is allocated a first channel frequency set of the channel frequency reuse pattern. The wireless network or a component thereof selects a channel from a second channel frequency set that is different from the first channel frequency set. The transceiving device then, using a directional antenna, transmits the streamed video to the at least one wireless terminal in a direction based upon the position information using the selected channel.
Type:
Grant
Filed:
March 27, 2008
Date of Patent:
September 11, 2012
Assignee:
Broadcom Corporation
Inventors:
David Rosmann, Jeyhan Karaoguz, Sherman (Xuemin) Chen, Michael Dove, Thomas J. Quigley, Stephen E. Gordon
Abstract: Provided is a method for synchronizing a multiple carrier receiver to receive a transmitted signal. The method includes determining a location of one or more scattered pilot carriers in a received symbol sequence and modulating the scattered pilot carriers in accordance with a single pseudorandom binary sequence. The method also includes performing phase error correction via the modulated scattered pilot carriers.
Abstract: A method and apparatus that controls the clock of a digital circuit, and therefore power consumption, without substantially comprising performance is provided. The apparatus may include monitoring the utilization of a First in First Out (FIFO) buffer. For example in a systems and methods according to the invention, clock speed may be reduced when the FIFO is relatively empty and increased when the FIFO is relatively full. The clock speed may be controlled by a phase locked loop, a clock divider, a clock masking device or a combination of more than one of these methods. Power reduction may also be obtained by controlling the clocking of different stages of a pipelined device. One or more aspects of the inventions may be implemented in combination with other aspects of the invention to further reduce power use.
Abstract: A method of manufacturing an integrated circuit (IC) package is provided. The method includes stacking an interposer substrate and a device structure, the interposer substrate having a first plurality of contact members formed on a first surface of the interposer substrate and the device structure having a second plurality of contact members that are exposed at a surface of the device structure, and laminating the interposer substrate and the device structure such that the first plurality of contact members are physically and electrically coupled to the second plurality of contact members. The interposer substrate is configured such that a circuit member mounted to a second surface of the interposer substrate is electrically coupled to the second plurality of contact members.
Abstract: A global navigation satellite system (GNSS) enabled mobile device comprising a crystal oscillator and an automatic frequency correction (AFC) circuit may be operable to share the crystal oscillator between processing of cellular radio signals and processing of GNSS data messages. The GNSS enabled mobile device may be operable to enforce an AFC correction when the crystal oscillator drifts beyond a specific frequency error. The AFC correction may be allowed during time intervals corresponding to GNSS words at which decoding of these words is not required. The GNSS enabled mobile device may be operable to disable the AFC correction during time intervals associated with decoding of words while the crystal oscillator may drift within the specific frequency error range. After the decoding of one or more of words is completed, the AFC correction may be allowed during the time intervals corresponding to these words.
Abstract: An integrated circuit (IC) package has a package member having a first surface and a second surface opposite the first surface. A first plurality of contact members is physically and electrically fixed to the second surface. An interposer substrate having a second plurality of contact members on one surface thereof which make physical and electrical contact with respective ones of the first plurality of contact members. The interposer substrate is configured to have at least one circuit member mounted to a second surface thereof opposite the one surface thereof.
Abstract: Aspects of a method and system for managing multimedia traffic over Ethernet are provided. In this regard, multimedia traffic comprising one or more Ethernet frames may be identified via one or more headers comprising the frames and processed according to the identification. In this regard, general Ethernet traffic may be multiplexed into egress frames based on the identification. Similarly, ingress Ethernet frames may be demultiplexed into multimedia traffic and general traffic based on the identification. Headers utilized to identify and/or route multimedia traffic and general traffic may comprise Ethertype and/or subtype fields. Headers utilized to identify and/or route multimedia traffic and general traffic may comprise a connection identifier field. Similarly, Headers utilized to identify and/or route multimedia traffic and general traffic may comprise a data type field.
Type:
Grant
Filed:
October 24, 2007
Date of Patent:
September 4, 2012
Assignee:
Broadcom Corporation
Inventors:
Wael William Diab, Yongbum Kim, Howard Frazier
Abstract: An apparatus includes an RFID transceiver, a processing module, and a wireless communication module. The RFID transceiver receives an RFID signal from a device and obtains communication information from the RFID signal. The processing module is operable to: determine a wireless communication protocol and device identification information from the communication information; receive an outbound data request; and generate outbound data in accordance with the outbound data request, wherein the outbound data includes at least a portion of the identification information. The wireless communication module converts outbound data into an outbound wireless signal in accordance with the wireless communication protocol.
Abstract: Certain embodiments of a method and system for handling connection setup in a network may comprise a network interface hardware device (NIHW) that may be operable to receive a services list and/or connection acceptance criteria from a first guest operating system running on a host system, receive a connection request from a second guest operating system running on the host system, and determine whether to allow establishment of the requested connection based on one or both of the services list and the connection acceptance criteria. The determination may be made prior to or during connection set up. The NIHW may maintain a connection state comprising information regarding set up of the requested connection. The services list may comprise one or more of a local network address, a local transport address, a network protocol, and a transport protocol. The communicated acceptance criteria may comprise packet filtering operations and/or security operations.
Abstract: A communication device includes an RF transceiver for communicating first data with a first remote communication device via a first protocol and a first frequency band in a first mode of operation, wherein the first data is communicated via indirect wireless communication. A millimeter wave transceiver communicates second data with a second remote communication device via a second protocol and a 60 GHz frequency band in a second mode of operation. A communication control module coordinates the communication of the first data and the second data with the at least one of the plurality of remote communication devices. A graphical interface device selects the first remote communication device and the second remote communication device and selects at least one of the first mode of operation and the second mode of operation, based on actions of a user.
Abstract: A system and method for dynamic energy efficient Ethernet (EEE) control policy based on user or device profiles and usage parameters. The analysis by an EEE control policy can consider user or device related EEE profile information that is either network propagated or retrieved from a network database. This EEE profile information can be used in combination with static settings established by an IT manager and the properties of the traffic on the link itself.
Abstract: A communication device includes memory, an input interface, a processing module, and a transmitter. The processing module receives a digital signal from the input interface, wherein the digital signal includes a desired digital signal component and an undesired digital signal component. The processing module identifies one of a plurality of codebooks based on the undesired digital signal component. The processing module then identifies a codebook entry from the one of the plurality of codebooks based on the desired digital signal component to produce a selected codebook entry. The processing module then generates a coded signal based on the selected codebook entry, wherein the coded signal includes a substantially unattenuated representation of the desired digital signal component and an attenuated representation of the undesired digital signal component. The transmitter converts the coded signal into an outbound signal in accordance with a signaling protocol and transmits it.
Abstract: An RF receiver and an RF transmitter, which are integrated in a single substrate, are operable to share a single reconfigurable filter to perform RF receiver filtering and RF transmitter filtering. The reconfigurable filter is configured to operate as a bandpass filter such as an image rejection bandpass filter for receiving RF signals by the RF receiver. The reconfigurable filter operates as a low pass filter for transmitting RF signals by the RF transmitter. The reconfigurable filter is configured to operate in a RF receiver filtering mode or a RF transmitter filtering mode, respectively. The reconfigurable filter is enabled to share configurable circuit components of the radio transceiver in both the radio frequency receiver filtering mode and the radio frequency transmitter filtering mode. The reconfigurable filter transitions between the radio frequency receiver filtering mode and the radio frequency transmitter filtering mode via reconfiguring the shared configurable circuit components.
Abstract: Provided is a high speed bit stream data conversion circuit that includes input ports to receive first bit streams at a first bit rate. Data conversion circuits receive the first bit streams and produce second bit stream(s), wherein the number and bit rate of the first and second bit stream(s) differ. Symmetrical pathways transport the first bit streams from the input ports to the data conversion circuits, wherein their transmission time(s) are substantially equal. A clock distribution circuit receives and symmetrically distributes a clock signal to data conversion circuits. A central trunk coupled to the clock port and located between a first pair of circuit pathways with paired branches that extend from the trunk and that couple to the data conversion circuits make up the clock distribution circuit. The distributed data clock signal latches data in data conversion circuits from the first to the second bit stream(s).
Type:
Grant
Filed:
August 16, 2010
Date of Patent:
September 4, 2012
Assignee:
Broadcom Corporation
Inventors:
Guangming Yin, Bo Zhang, Mohammad Nejad, Jun Cao
Abstract: In an Ethernet network comprising link partners coupled via an Ethernet link, an energy efficient Ethernet network communication control policy may specify a power level mode. Power level control data may be communicated between a PHY and a MAC via an MII, MDIO or a bus that is not specified by 802.3. A device above a MAC layer device may comprise hardware, software and/or firmware that may communicate the control policy to the PHY layer device and/or MAC layer device. Control data may be inserted within an inter-packet gap, a data packet preamble and/or a Q ordered set and/or may be sent via an out-of-band signal. A response to the control data may be sent via an in band path and/or out of band path. Link partners may enter and/or exit a power mode, for example, a low power idle and/or a sub-rate mode based on the communicated control data.