Patents Assigned to Bruker HTS GmbH
  • Patent number: 10538840
    Abstract: A method for depositing film on a substrate (16) through pulsed laser deposition, which includes: generating at least two pulsed laser beams (4, 5, 6) with at least one laser (1), and directing the at least two laser beams (4, 5, 6) to different target spots (9, 10, 11) of a target (12), whereby the target (12) is ablated and at least two plasma plumes (13) are created. The plasma plumes (13) create a flow of target material towards the substrate (16) and the target material is deposited onto the substrate (16) at a deposition area (24). The plasma plumes (13) created by the at least two laser beams (4, 5, 6) are spatially and temporally superimposed, and the target spots (9, 10, 11) are separated from each other at a distance that allows a gas-dynamical interaction of the created plasma plumes (13).
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: January 21, 2020
    Assignee: BRUKER HTS GMBH
    Inventors: Alexander Usoskin, Thomas Schneider
  • Patent number: 10418154
    Abstract: A superconductor structure (10, 20, 30), having a first strip piece (1), a second strip piece (2) and a third strip piece (3). Each strip piece has a substrate (5) and a superconducting layer (6) deposited thereon. End sections of the second and third strip pieces are connected via a layer (7) made of a first normally conducting material to the first strip piece, the second and third strip pieces overlap with the first strip piece, the superconducting layers of the second and third strip pieces face the superconducting layer of the first strip piece, and a seam (4, 23, 24) with a defined path length is formed between the end sections of the second and third strip pieces. The seam extends over an extension region (8) of the superconductor structure. Splicing strip pieces together in this manner achieves a high current load capacity.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: September 17, 2019
    Assignee: BRUKER HTS GMBH
    Inventors: Ulrich Betz, Alexander Usoskin
  • Patent number: 9627107
    Abstract: A method for operating a superconducting device (1; 1a, 1b), having a coated conductor (2) with a substrate (3) and a quenchable superconducting film (4), wherein the coated conductor (2) has a width W and a length L, is characterized in that 0.5?L/W?10, in particular 0.5?L/W?8, and that the coated conductor (2) has an engineering resistivity ?eng shunting the superconducting film (4) in a quenched state, with ?eng>2.5 ?, wherein RIntShunt=?eng*L/W, with RIntShunt: internal shunt resistance of the coated conductor (2). The risk of a burnout of a superconducting device in case of a quench in its superconducting film is thereby further reduced to such an extent that the device can be operated without use of an additional external shunt.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: April 18, 2017
    Assignee: Bruker HTS GmbH
    Inventor: Alexander Usoskin
  • Patent number: 9197060
    Abstract: An inductive fault current limiter (1) has a normally conducting primary coil assembly (2) with a multiplicity of turns (3) and a superconducting, short-circuited secondary coil assembly (4), wherein the primary coil assembly (2) and the secondary coil assembly (4) are at least substantially coaxial with respect to each other and at least partially interleaved in each other. The primary coil assembly (2) has a first coil section (2a) and a second coil section (2b), wherein the turns (3) of the first coil section (2a) of the primary coil assembly (2) are disposed radially inside the secondary coil assembly (4) and the turns (3) of the second coil section (2b) of the primary coil assembly (2) are disposed radially outside the secondary coil assembly (4). The fault current limiter has an increased inductance ratio.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: November 24, 2015
    Assignee: Bruker HTS GmbH
    Inventors: Klaus Schlenga, Alexander Usoskin
  • Patent number: 9159897
    Abstract: A superconducting structure (1) has a plurality of linked band-segments (2), with each linked band-segment (2) having a substrate (3) and a superconducting layer deposited onto it (4). The linked band-segments (2) are joined to one another by superconducting layers (4) that face each other. Each linked band-segment (2) is joined to two additional band-segments (7a, 7b) in such a way that the superconducting layers (4) of the two additional band-segments (7a, 7b) and of the linked band-segment (2) face each other. The additional band-segments (7a, 7b) together substantially overlap the total length (L) of the linked band-segment (2). This provides for a superconducting structure, which exhibits high superconductivity and which is very suitable for long distances.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: October 13, 2015
    Assignee: Bruker HTS GmbH
    Inventors: Klaus Schlenga, Alexander Usoskin
  • Patent number: 9065267
    Abstract: A superconducting device (1) has an elongated coated conductor (2), with a substrate (3) and a quenchable superconducting film (4), wherein the elongated coated conductor (2) has a width W, and an external shunt system (5), with bridge contacts (6; 6a, 6b), electrically connected to the superconducting film (4), and a resistive member (7), thermally insulated from the coated conductor (2) and electrically connected to the bridge contacts (6; 6a, 6b). The device is is characterized in that the bridge contacts (6; 6a, 6b) along the elongated coated conductor (2) have a spacing SP with SP?8*W. The device reduces the risk of a burnout of a superconducting device in case of a quench in its superconducting film.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: June 23, 2015
    Assignee: Bruker HTS GmbH
    Inventor: Alexander Usoskin
  • Patent number: 9008741
    Abstract: A superconducting structure (1) has a plurality of coated conductor tapes (2; 2a-2o), each with a substrate (3) which is one-sided coated with a superconducting film (4), in particular an YBCO film, wherein the superconducting structure (1) provides a superconducting current path along an extension direction (z) of the superconducting structure (1), wherein the coated conductor tapes (2; 2a-2o) provide electrically parallel partial superconducting current paths in the extension direction (z) of the superconducting structure (1), is characterized in that the coated conductor tapes (2; 2a-2o) are superconductively connected among themselves along the extension direction (z) continuously or intermittently. A more stable superconducting structure with which high electric current strengths may be transported is thereby provided.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: April 14, 2015
    Assignee: Bruker HTS GmbH
    Inventors: Alexander Usoskin, André Aubele
  • Patent number: 8983562
    Abstract: An inductive fault current limiter (1), has a normally conducting primary coil assembly (2) with a multiplicity of turns (3), and a superconducting, short-circuited secondary coil assembly (4). The primary coil assembly (2) and the secondary coil assembly (4) are disposed at least substantially coaxially with respect to each other and at least partially interleaved in each other. The secondary coil assembly (4) has a first coil section (4a) disposed radially inside the turns (3) of the primary coil assembly (2) and a second coil section (4b) disposed radially outside the turns (3) of the primary coil assembly (2). The fault current limiter has an increased inductance ratio.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: March 17, 2015
    Assignee: Bruker HTS GmbH
    Inventors: Klaus Schlenga, Alexander Usoskin
  • Patent number: 8826674
    Abstract: A cryostat for electric power conditioner comprising external walls (1, 3, 11) in contact with an ambient medium, internal walls (2, 12, 13) in contact with a cooled medium and a thermal insulating gap (4, 14) formed between the external walls (1, 3, 11) and the internal walls (2, 12, 13). At least one part of the at least one external wall (1, 3, 11) and/or at least one part of the at least one internal wall (2, 12, 13) of the cryostat comprises a layered structure (15, 16, 17).
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: September 9, 2014
    Assignee: Bruker HTS GmbH
    Inventor: Alexander Usoskin
  • Patent number: 8809236
    Abstract: A method for manufacturing a high temperature superconductor (=HTS) coated tape (20), with the following steps: preparation of a substrate tape (1), deposition of at least one buffer layer (2), deposition of an HTS film (3), deposition of a metallic protection layer (35) on the HTS film (3) and deposition of a metallic shunt layer (36) is characterized in that, prior to deposition of the metallic shunt layer (36), the partially prepared coated tape (10) undergoes a laser beam cutting in order to provide a desired tape form, wherein the laser beam cutting is applied together with a gas flow and/or a liquid flow (23). The method reduces the loss of critical current and reduces or avoids a deterioration of the critical temperature in a HTS coated tape due to tape cutting.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: August 19, 2014
    Assignees: Oswald Elektromotoren GmbH, Bruker HTS GmbH
    Inventors: Johannes Oswald, Bernhard Oswald, Thomas Reis, Alexander Rutt, Alexander Usoskin
  • Patent number: 8802598
    Abstract: A superconducting element (SE1-SE5) with a central section (20) located between two end sections (21a, 21b) of the superconducting element (SE1-SE5), the superconducting element (SE1-SE5) has a substrate tape (10), a buffer layer (11), a high temperature superconducting (HTS) layer (12), a first protection layer (14), and a shunt layer (17), The superconducting element (SE1-SE5) has at least one elongated opening (19) in the central section (20) elongated between the two end sections (21a, 21b), whereby the at least one elongated opening (19) divides the central section (20) of the superconducting element (SE1-SE5) into at least two HTS strips (18a, 18b, 18c), whereby the shunt layer (17) envelops the surface of each of the HTS strips (18a, 18b, 18c). The superconducting element shows improved electrical stabilization and time stability.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: August 12, 2014
    Assignee: Bruker HTS GmbH
    Inventor: Alexander Usoskin
  • Patent number: 8629087
    Abstract: A high temperature superconductor (=HTS) coated conductor (1), comprising an HTS layer (11) deposited epitaxially on a substrate (2), wherein the HTS layer (11) exhibits a lattice with a specific crystal axis being oriented perpendicular to the substrate plane (SP), in particular wherein the HTS layer material is of ReBCO type and the c-axis (c) is oriented perpendicular to the substrate plane (SP), wherein the HIS layer (11) comprises particle inclusions (4), in particular wherein the particle inclusions (4) may be used to introduce pinning of magnetic flux, is characterized in that at least a part (4a) of the particle inclusions (4) are formed of the same material as the HTS layer (11), and/or of chemical fractions of the material of the HTS layer (11), such that the average stoichiometry of said part (4a) of the particle inclusions (4) corresponds to the stoichiometry of the HTS layer (11), and that the particle inclusions of said part (4a) are discontinuities of the lattice of the HTS layer (11).
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: January 14, 2014
    Assignee: Bruker HTS GmbH
    Inventors: Alexander Usoskin, Klaus Schlenga
  • Publication number: 20130203604
    Abstract: A superconducting structure (1) has a plurality of coated conductor tapes (2; 2a-2o), each with a substrate (3) which is one-sided coated with a superconducting film (4), in particular an YBCO film, wherein the superconducting structure (1) provides a superconducting current path along an extension direction (z) of the superconducting structure (1), wherein the coated conductor tapes (2; 2a-2o) provide electrically parallel partial superconducting current paths in the extension direction (z) of the superconducting structure (1), is characterized in that the coated conductor tapes (2; 2a-2o) are superconductively connected among themselves along the extension direction (z) continuously or intermittently. A more stable superconducting structure with which high electric current strengths may be transported is thereby provided.
    Type: Application
    Filed: February 6, 2013
    Publication date: August 8, 2013
    Applicant: BRUKER HTS GMBH
    Inventor: Bruker HTS GmbH
  • Patent number: 8411401
    Abstract: A method for current conditioning, comprising transporting a primary current (1) through a primary coil (2), coupling a secondary coil (3) to the primary coil (2) via a common magnetic flux, wherein the secondary coil (3) comprises a superconductor capable of quenching, with the quenching causing a transition of the superconductor from a low resistance superconducting state to a high resistance quenched state, and in the low resistance superconducting state of the secondary coil (3), guiding a major fraction (8) of the common magnetic flux of the primary coil (2) and the secondary coil (3) within a ferromagnetic medium (5a), is characterized by upon quenching, switching the common magnetic flux such that a major fraction (17) of the common magnetic flux is guided outside the ferromagnetic medium (5a) in the high resistance quenched state of the superconductor. An economic and efficient method for current conditioning is thereby provided which reduces harmonic distortions.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: April 2, 2013
    Assignee: Bruker HTS GmbH
    Inventors: Alexander Usoskin, Hans-Udo Klein
  • Patent number: 8369912
    Abstract: A superconducting cable (1; 10; 30) has a channel (4, 38) for a cooling liquid, a tubular support structure (5, 37), at least two layers (2, 3; 11-15; 31, 32, 35, 36) comprising high Tc conductors (2a, 3a) which comprise a high Tc material, and an insulation (7, 17), in particular a tubular insulation (7). The conductors (3a) of the outer layer (3; 13-15; 33, 36) comprise a first high Tc material that is different from a second high Tc material of the conductors (2a) of the inner layer (2; 11-12; 32, 35), wherein the first high Tc material exhibits lower AC losses as compared the second high Tc material, and that the high Tc conductors (3a) of the outer layer (3; 13-15; 33, 36) comprise normal-conducting interruptions (41, 42, 43). The superconducting cable exhibits reduced AC losses.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: February 5, 2013
    Assignee: Bruker HTS GmbH
    Inventor: Alexander Usoskin
  • Patent number: 8340737
    Abstract: A current lead (1) for connecting a superconducting load system (5), in particular, a magnet coil, to a current feed point (3a) that is at a higher temperature than the load system (5) comprises a flat, elongated carrier (6) and a plurality of mechanical and electrical parallel high-temperature superconductors (HTSC) (10), wherein the HTSCs (10) are disposed side by side on the carrier (6). The carrier (6) is made of stainless steel, and a plurality of HTSCs (10) are each disposed side by side on two opposite carrier (6) sides of the carrier. The carrier (6) is constituted in the shape of a plate with cut-outs (15; 15a-15d). The current lead has a high current capacity and low thermal conductivity and provides improved emergency conduction properties in case of failure of the superconductivity in the HTSC.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: December 25, 2012
    Assignee: Bruker HTS GmbH
    Inventors: Tabea Arndt, Martin Munz, André Aubele, Bernd Sailer
  • Publication number: 20120309631
    Abstract: A current lead (1) for connecting a superconducting load system (5), in particular, a magnet coil, to a current feed point (3a) that is at a higher temperature than the load system (5) comprises a flat, elongated carrier (6) and a plurality of mechanical and electrical parallel high-temperature superconductors (HTSC) (10), wherein the HTSCs (10) are disposed side by side on the carrier (6). The carrier (6) is made of stainless steel, and a plurality of HTSCs (10) are each disposed side by side on two opposite carrier (6) sides of the carrier. The carrier (6) is constituted in the shape of a plate with cut-outs (15; 15a-15d). The current lead has a high current capacity and low thermal conductivity and provides improved emergency conduction properties in case of failure of the superconductivity in the HTSC.
    Type: Application
    Filed: July 30, 2010
    Publication date: December 6, 2012
    Applicant: Bruker HTS GmbH
    Inventors: Tabea Arndt, Martin Munz, André Aubele, Bernd Sailer
  • Patent number: 8283293
    Abstract: A method for producing a high temperature superconductor (=HTS) coated conductor (12), wherein a buffer layer (2; 22) and an HTS layer (4; 24; 65) are deposited on a substrate (1; 21), with the following steps: a) after depositing the buffer layer (2; 22), the surface (2a) is locally roughened, resulting in a roughened surface (13), b) a non-superconducting, closed intermediate layer (3; 23) is deposited on top of the roughened surface (13), c) and the HTS layer (4; 24; 65) is deposited on top of the intermediate layer (3; 23). A simple method for producing a HTS coated conductor with reduced losses, and with improved critical current and critical magnetic field is thereby provided.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: October 9, 2012
    Assignee: Bruker HTS GmbH
    Inventors: Klaus Schlenga, Alexander Usoskin
  • Patent number: 8275431
    Abstract: A tape-type superconductor (1), comprising an elongated substrate (2), in particular a metal tape, and a continuous superconducting layer (3), in particular of a HTS type material, deposited on the substrate (2), is characterized in that Ic?/Ic??1.5, with Ic? being the width density of critical current of the continuous superconducting layer (3) in parallel to the substrate (2) and in parallel to the elongated direction of the substrate (2), and with Ic? being the width density of critical current of the continuous superconducting layer (3) in parallel to the substrate (2) and perpendicular to the elongated direction of the substrate (2). The tape-type superconductor has reduced ac losses.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: September 25, 2012
    Assignee: Bruker HTS GmbH
    Inventors: Alexander Usoskin, Klaus Schlenga
  • Patent number: 8252725
    Abstract: A fault current limiter, with a superconducting device (1; 21; 31; 41; 51; 61; 71; 72) comprising a sequence of superconducting elements (2a-2f), each with an electrically conducting substrate (3a-3d), a superconducting film (5a-5d), and an electrically insulating intermediate layer (4a-4c) provided between the substrate and the superconducting film, wherein the superconducting films (5a-5d) of adjacent superconducting elements (2a-2f) of the sequence are electrically connected, in particular in series, wherein the electrically conducting substrate (3a-3d) of each superconducting element (2a-2f) of the sequence is electrically insulated from each electrically conducting substrate (3a-3d) of those adjacent superconducting elements (2a-2f) within the sequence whose superconducting films (5a-5d) are electrically connected in series with the superconducting film (5a-5d) of said superconducting element (2a-2f).
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: August 28, 2012
    Assignees: Areva T & D SAS, Bruker HTS GmbH
    Inventors: Francis James Mumford, Alexander Usoskin