Patents Assigned to Bunge Amorphic Solutions LLC
  • Patent number: 9955700
    Abstract: Antimicrobial chemical compositions comprise an aluminum phosphate (AlP) solid dispersed within a binding polymer, wherein one or more bioactive materials are disposed within AlP forming a bioactive-AlP complex. The complex may comprise the bioactive material chemically bonded with the AlP, physically combined with the AlP, or a combination of both. The complex may be formed according to precipitation, condensation and sol-gel methods of forming. The complex is engineered to provide a controlled delivery of the bioactive material or a constituent thereof upon exposure to moisture to give a desired level of antimicrobial resistance to a film or composite formed from the composition of at least about 30 ?g/m2, and may also provide a desired degree of corrosion resistance through the release of passivating phosphate anion.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: May 1, 2018
    Assignee: BUNGE AMORPHIC SOLUTIONS LLC
    Inventor: Raymond E. Foscante
  • Patent number: 9840625
    Abstract: Anticorrosive coating compositions as disclosed comprise a binding polymer and an aluminum phosphate corrosion inhibiting pigment dispersed therein. The coating composition comprises up to 25 percent by weight aluminum phosphate. The binding polymer can include solvent-borne polymers, water-borne polymers, solventless polymers, and combinations thereof. The aluminum phosphate is made by sol gel process of combining an aluminum salt with phosphoric acid and a base material. Aluminum phosphate colloidal particles are nanometer sized, and aggregate to form substantially spherical particles. The coating composition provides a controlled delivery of phosphate anions of 100 to 1,500 ppm, depending on post-formation treatment of the aluminum phosphate, and has a total solubles content of less than 1500 ppm, The amorphous aluminum phosphate is free of alkali metals and alkaline earth metals, and has a water adsorption potential of up to about 25 percent by weight water when present in a cured film.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: December 12, 2017
    Assignee: Bunge Amorphic Solutions LLC
    Inventor: Raymond E. Foscante
  • Patent number: 9801385
    Abstract: Antimicrobial chemical compositions comprise an aluminum phosphate (AlP) solid dispersed within a binding polymer, wherein one or more bioactive materials are disposed within AlP forming a bioactive-AlP complex. The complex may comprise the bioactive material chemically bonded with the AlP, physically combined with the AlP, or a combination of both. The complex may be formed according to precipitation, condensation and sol-gel methods of forming. The complex is engineered to provide a controlled delivery of the bioactive material or a constituent thereof upon exposure to moisture to give a desired level of antimicrobial resistance to a film or composite formed from the composition of at least about 30 ?g/m2, and may also provide a desired degree of corrosion resistance through the release of passivating phosphate anion.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: October 31, 2017
    Assignee: Bunge Amorphic Solutions LLC
    Inventor: Raymond E. Foscante
  • Patent number: 9611147
    Abstract: APs are made by binary condensation via base-to-acid or acid-to-base routes. In the base-to-acid route, an aluminum hydroxide slurry is added to phosphoric acid that reacts to produce an aluminum phosphate condensate. In the acid-to-base route, phosphoric acid is added to an aluminum hydroxide slurry that reacts to produce an aluminum phosphate condensate. In an alternative base-to-acid route, an acidic aluminum phosphate is first made by adding phosphoric acid to a first amount of aluminum hydroxide slurry, and such acidic aluminum phosphate is added to a remaining amount of aluminum hydroxide slurry to react and produce an aluminum phosphate condensate. The reactions can be controlled to form an in-situ layered aluminum phosphate. So-formed APs can be amorphous, crystalline, or a combination thereof, and have low oil absorption and surface area, making them particularly useful in such end-use applications as extender pigments in coating compositions, replacing up to 70 wt % of TiO2.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: April 4, 2017
    Assignee: Bunge Amorphic Solutions LLC
    Inventors: Raymond E. Foscante, Neil Maynard Johnson, Yucel Burdurlu Tavolara, Douglas Malcolm Harless, Melanie Astrid Micha-Schama
  • Patent number: 9475942
    Abstract: AlP composite materials comprise an AlP aggregate core, and a shell disposed partially or entirely over the core and formed from a pigment material, e.g., TiO2, having an index of refraction greater than the core, providing an overall index or refraction greater than the core and suited for use as a pigment replacement or extender. The AlP core comprises amorphous AlP, crystalline AlP, or a combination thereof, and can have an average particle size of less than about 30 microns. The TiO2 can have an average grain size less than about 10 microns. The shell can have a layer thickness that is at least about 0.0001 microns. The shell is bonded to the core by a reaction between functional groups of the shell and core. The AlP composite material can be engineered to provide properties in addition to brightness for use as a pigment such as anticorrosion and/or antimicrobial protection.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: October 25, 2016
    Assignee: BUNGE AMORPHIC SOLUTIONS LLC
    Inventors: Ronald James Lewarchik, Raymond E. Foscante
  • Patent number: 9371454
    Abstract: Anticorrosive coating compositions comprise a binding polymer and an amorphous aluminum phosphate corrosion inhibiting pigment dispersed therein. The coating composition comprises 1 to 25 percent by weight aluminum phosphate. The binding polymer can include solvent-borne polymers, water-borne polymers, solventless polymers, and combinations thereof. The aluminum phosphate is made by combining an aluminum source with a phosphorous source to form an amorphous aluminum phosphate solid condensate. The coating composition is specially engineered to provide a controlled delivery of phosphate anions of 50 to 500 ppm, and has a total solubles content of less than 1500 ppm. The amorphous aluminum phosphate is preferably free of alkali metals and alkaline earth metals. The amorphous aluminum phosphate has an oil absorption of less than 50, and a surface area of less than about 20 m2/g, The coating composition has a water adsorption potential of up to 25% by weight water.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: June 21, 2016
    Assignee: BUNGE AMORPHIC SOLUTIONS LLC
    Inventor: Raymond E. Foscante
  • Patent number: 9187653
    Abstract: An aluminum phosphate composition comprising aluminum phosphate, aluminum polyphosphate, aluminum metaphosphate, or a mixture thereof. The composition may be characterized by, when in powder form, having particles wherein some of the particles have at least one or more voids per particle. In addition, the composition is characterized by exhibiting two endothermic peaks in Differential Scanning Calorimetry between about 90 degrees to about 250 degrees Celsius. The composition is also characterized by, when in powder form, having a dispersibility of at least 0.025 grams per 1.0 gram of water. The composition is made by a process comprising contacting phosphoric acid with aluminum sulfate and an alkaline solution to produce an aluminum phosphate based product; and optionally calcining the aluminum phosphate, polyphosphate or metaphosphate based product at an elevated temperature. The composition is useful in paints and as a substitute for titanium dioxide.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: November 17, 2015
    Assignees: BUNGE AMORPHIC SOLUTIONS LLC, UNIVERSIDADE ESTADUAL DE CAMPINAS
    Inventors: Fernando Galembeck, João de Brito
  • Patent number: 9169120
    Abstract: An aluminum phosphate or polyphosphate-based pigment product is made by a process comprising contacting phosphoric acid with aluminum sulfate and an alkaline solution to produce an aluminum phosphate based product; and optionally calcining the aluminum phosphate based product at an elevated temperature, wherein the process is substantially free of an organic acid. The aluminum phosphate or polyphosphate-based pigment is amorphous. The amorphous aluminum phosphate or polyphosphate characterized by a bulk density of less than 2.30 grams per cubic centimeter and a phosphorus to aluminum mole ratio of greater than 0.8. The composition is useful in paints and as a substitute for titanium dioxide.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: October 27, 2015
    Assignees: BUNGE AMORPHIC SOLUTIONS LLC, UNIVERSIDADE ESTADUAL DE CAMPINAS
    Inventors: Fernando Galembeck, João de Brito
  • Patent number: 9155311
    Abstract: Antimicrobial chemical compositions comprise an aluminum phosphate (AlP) solid dispersed within a binding polymer, wherein one or more bioactive materials are disposed within AlP forming a bioactive-AlP complex. The complex may comprise the bioactive material chemically bonded with the AlP, physically combined with the AlP, or a combination of both. The complex may be formed according to precipitation, condensation and sol-gel methods of forming. The complex is engineered to provide a controlled delivery of the bioactive material or a constituent thereof upon exposure to moisture to give a desired level of antimicrobial resistance to a film or composite formed from the composition of at least about 30 ?g/m2, and may also provide a desired degree of corrosion resistance through the release of passivating phosphate anion.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 13, 2015
    Assignee: BUNGE AMORPHIC SOLUTIONS LLC
    Inventor: Raymond E. Foscante
  • Patent number: 9078445
    Abstract: Antimicrobial chemical compositions comprise an aluminum phosphate (AlP) solid dispersed within a binding polymer, wherein one or more bioactive materials are disposed within AlP forming a bioactive-AlP complex. The complex may comprise the bioactive material chemically bonded with the AlP, physically combined with the AlP, or a combination of both. The complex may be formed according to precipitation, condensation and sol-gel methods of forming. The complex is engineered to provide a controlled delivery of the bioactive material or a constituent thereof upon exposure to moisture to give a desired level of antimicrobial resistance to a film or composite formed from the composition of at least about 30 ?g/m2, and may also provide a desired degree of corrosion resistance through the release of passivating phosphate anion.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: July 14, 2015
    Assignee: BUNGE AMORPHIC SOLUTIONS LLC
    Inventor: Raymond E. Foscante
  • Patent number: 9023145
    Abstract: Slurry composition comprising amorphous aluminum phosphate, polyphosphate orthophosphate, metaphosphate and/or combination thereof and a dispersant are described. In certain embodiments, the polyphosphate orthophosphate and/or metaphosphate concentration is about 40 to about 70 weight % and the dispersant concentration is less than about 3.5 weight % based on the total weight of the slurry. In one embodiment, the composition is useful in paints, varnishes, printing inks, papers and plastics. The compositions can be used as a substitute for titanium dioxide in various applications.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: May 5, 2015
    Assignee: Bunge Amorphic Solutions LLC
    Inventors: Fernando Galembeck, Cesar Augusto Sales Barbosa, Melissa Braga
  • Patent number: 9005355
    Abstract: Anticorrosive coating compositions as disclosed comprise a binding polymer and an aluminum phosphate corrosion inhibiting pigment dispersed therein. The coating composition comprises up to 25 percent by weight aluminum phosphate. The binding polymer can include solvent-borne polymers, water-borne polymers, solventless polymers, and combinations thereof. The aluminum phosphate is made by sol gel process of combining an aluminum salt with phosphoric acid and a base material. Aluminum phosphate colloidal particles are nanometer sized, and aggregate to form substantially spherical particles. The coating composition provides a controlled delivery of phosphate anions of 100 to 1,500 ppm, depending on post-formation treatment of the aluminum phosphate, and has a total solubles content of less than 1500 ppm, The amorphous aluminum phosphate is free of alkali metals and alkaline earth metals, and has a water adsorption potential of up to about 25 percent by weight water when present in a cured film.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: April 14, 2015
    Assignee: Bunge Amorphic Solutions LLC
    Inventor: Raymond E. Foscante
  • Publication number: 20140271759
    Abstract: Antimicrobial chemical compositions comprise an aluminum phosphate (AlP) solid dispersed within a binding polymer, wherein one or more bioactive materials are disposed within AlP forming a bioactive-AlP complex. The complex may comprise the bioactive material chemically bonded with the AlP, physically combined with the AlP, or a combination of both. The complex may be formed according to precipitation, condensation and sol-gel methods of forming. The complex is engineered to provide a controlled delivery of the bioactive material or a constituent thereof upon exposure to moisture to give a desired level of antimicrobial resistance to a film or composite formed from the composition of at least about 30 ?g/m2, and may also provide a desired degree of corrosion resistance through the release of passivating phosphate anion.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: BUNGE AMORPHIC SOLUTIONS LLC
    Inventor: Raymond E. Foscante
  • Patent number: 8808657
    Abstract: A process for the preparation of amorphous aluminum phosphate or polyphosphate-based pigment by reacting aluminum phosphate and sodium aluminate is provided. The amorphous aluminum phosphate or polyphosphate is characterized by a skeletal density of less than 2.50 grams per cubic centimeter and a phosphorus to aluminum mole ratio of greater than 0.8. In one embodiment, the composition is useful in paints as a substitute for titanium dioxide.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: August 19, 2014
    Assignee: Bunge Amorphic Solutions LLC
    Inventors: Fernando Galembeck, Joao de Brito, Ádamo César Mastrângelo Amaro dos Santos, Renato Rosseto
  • Publication number: 20140163151
    Abstract: AlP composite materials comprise an AlP aggregate core, and a shell disposed partially or entirely over the core and formed from a pigment material, e.g., TiO2, having an index of refraction greater than the core, providing an overall index or refraction greater than the core and suited for use as a pigment replacement or extender. The AlP core comprises amorphous AlP, crystalline AlP, or a combination thereof, and can have an average particle size of less than about 30 microns. The TiO2 can have an average grain size less than about 10 microns. The shell can have a layer thickness that is at least about 0.0001 microns. The shell is bonded to the core by a reaction between functional groups of the shell and core. The AlP composite material can be engineered to provide properties in addition to brightness for use as a pigment such as anticorrosion and/or antimicrobial protection.
    Type: Application
    Filed: December 7, 2012
    Publication date: June 12, 2014
    Applicant: Bunge Amorphic Solutions LLC
    Inventors: Ronald James Lewarchik, Raymond E. Foscante
  • Publication number: 20130274400
    Abstract: APs are made by binary condensation via base-to-acid or acid-to-base routes. In the base-to-acid route, an aluminum hydroxide slurry is added to phosphoric acid that reacts to produce an aluminum phosphate condensate. In the acid-to-base route, phosphoric acid is added to an aluminum hydroxide slurry that reacts to produce an aluminum phosphate condensate. In an alternative base-to-acid route, an acidic aluminum phosphate is first made by adding phosphoric acid to a first amount of aluminum hydroxide slurry, and such acidic aluminum phosphate is added to a remaining amount of aluminum hydroxide slurry to react and produce an aluminum phosphate condensate. The reactions can be controlled to form an in-situ layered aluminum phosphate. So-formed APs can be amorphous, crystalline, or a combination thereof, and have low oil absorption and surface area, making them particularly useful in such end-use applications as extender pigments in coating compositions, replacing up to 70 wt % of TiO2.
    Type: Application
    Filed: April 16, 2012
    Publication date: October 17, 2013
    Applicant: BUNGE AMORPHIC SOLUTIONS LLC
    Inventors: Raymond E. Foscante, Neil Maynard Johnson, Yucel Burdurlu Tavolara, Douglas Malcolm Harless, Melanie Astrid Micha-Schama
  • Publication number: 20130274372
    Abstract: Antimicrobial chemical compositions comprise an aluminum phosphate (AlP) solid dispersed within a binding polymer, wherein one or more bioactive materials are disposed within AlP forming a bioactive-AlP complex. The complex may comprise the bioactive material chemically bonded with the AlP, physically combined with the AlP, or a combination of both. The complex may be formed according to precipitation, condensation and sol-gel methods of forming. The complex is engineered to provide a controlled delivery of the bioactive material or a constituent thereof upon exposure to moisture to give a desired level of antimicrobial resistance to a film or composite formed from the composition of at least about 30 ?g/m2, and may also provide a desired degree of corrosion resistance through the release of passivating phosphate anion.
    Type: Application
    Filed: April 16, 2012
    Publication date: October 17, 2013
    Applicant: Bunge Amorphic Solutions LLC
    Inventor: Raymond E. Foscante