Abstract: A novel electrode and method of making the same. The electrode includes activated carbon that has been modified by treatment with an alkali solution and an acid, such as nitric acid, and then washed and dried. The carbon may then be annealed. The method of modifying the activated carbon helps produce an electrode with considerably higher electric capacity and stable electric characteristics. Additionally, the electrodes may be produced more quickly and inexpensively and, therefore, permits their production of electrodes that are used for superconductors.
Type:
Grant
Filed:
February 26, 2001
Date of Patent:
October 10, 2006
Assignee:
C and T Company, Inc.
Inventors:
Michail N. Adrianov, Vera V. Litvinskaya, Vitaly P. Popov, Natalya M. Zaruchejskaya, Valentin V. Chebykin, Pavel A. Shmatko, Valery A. Carev
Abstract: A novel electrode and method of making the same. The electrode may be used in electric double layer capacitors. The electrodes include activated carbon that has been mixed with a thermosetting polymer binder. Activated carbon cloth may also be used. The method of modifying the activated carbon helps produce an electrode with considerably higher electric capacity, higher durability, and low resistance, while maintaining high conductivity. Additionally, the electrodes may be produced more quickly and inexpensively.
Type:
Grant
Filed:
February 26, 2001
Date of Patent:
September 19, 2006
Assignee:
C and T Company, Inc.
Inventors:
Michail N. Adrianov, Vera V. Litvinskaya, Vitaly P. Popov, Valentin V. Chebykin, Pavel A. Shmatko, Gennady V. Dvoretskiy
Abstract: Provided in the present invention is a positive electrode for use in an Electric Double Layer (EDL) Hybrid Electrochemical Capacitor (HEC). Embodiments of the invention can be further adapted produce an EDL HEC with a high specific energy value and a high maximum voltage value. Some aspects of an embodiment of the present invention, including the aforementioned positive electrode, also cooperate to provide an EDL HEC that has a relatively high cycleability.
Abstract: A method of formation and charge of a negative polarizable electrode of an electric double layer capacitor. The method can be used for manufacturing of high capacitance capacitors utilizing the energy of the electric double layer. The methods achieve hydrogen evolution on carbonaceous materials using very negative potentials. The methods provide an EDL capacitor, employing an aqueous electrolyte, with improved specific energy. The methods may also ensure the hermeticity of the capacitor. The methods include pretreating the electric double layer capacitor by keeping the negative polarizable electrode at a desired minimum potential prior to use. Desirably, the minimum potential ranges from about −0.25 to about −1.2 V vs. a reference hydrogen electrode.
Abstract: The present invention is directed to a novel capacitor. The capacitor may be used in electric double layer capacitors. The capacitors include a polarizable electrode including activated carbon and a non-polarizable electrode including lead dioxide and lead sulfate. The capacitors of the present invention provide considerably higher electric capacity, higher durability, and low resistance, while maintaining high conductivity. Additionally, the electrodes may be produced more quickly and inexpensively.