Abstract: A system and method for recognizing and forecasting anomalous sensory behavioral patterns of a machine, including: monitoring a first set of time-stamped sensory input data related to at least one machine; determining, upon analysis of the first set of time-stamped sensory input data, a first suspicious pattern of a first anomalous sensory input behavior associated with the first set of time-stamped sensory input data; comparing the first suspicious pattern to a second pattern of a second anomalous sensory input behavior that is associated with a second set of time-stamped sensory input data, wherein the second pattern previously determined to be indicative of a machine failure; and, determining if the first suspicious pattern is correlated above a predetermined threshold with the second pattern.