Patents Assigned to Cadwell Industries, Inc.
  • Patent number: 7230688
    Abstract: A pulse oximeter for measuring arterial oxygen saturation levels is provided. The pulse oximeter includes an LED signal generator for transmitting one or more light signals to a testing medium and a photodetector signal generator for processing at least a portion of the light signal generated by the LED signal generator into a photocurrent. The pulse oximeter further includes an integrated information transmission component for transmitting information corresponding to the pulse oximeter and which is integrated with the pulse oximeter without requiring additional wiring. A processing system within the pulse oximeter can generate a voltage to the integrated information transmission component to read the information stored in the component without causing the LED signal generator to generate a signal.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: June 12, 2007
    Assignee: Cadwell Industries, Inc.
    Inventor: Richard A. Villarreal
  • Patent number: 7072521
    Abstract: A system and method for optimizing and quantifying movement in synchronous video are provided. An image-processing computer obtains a synchronous video image, which is converted to color bitmap frames. Each frame is then sub-divided into smaller pixel blocks. Processed independently, the size of each pixel block is reduced by truncation of the color resolution and the use of a limited color table for the pixel block. The cumulative color difference in the pixel block is calculated and if it is below a threshold, the pixel block data will not be saved. Alternatively, the pixel block data is compressed and saved. Upon decoding, the color difference between each pixel and the same pixel in the preceding frame is compared. The color difference is assigned a pseudocolor and is displayed on the screen. Larger color differences are represented with more pronounced pseudocolors.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: July 4, 2006
    Assignee: Cadwell Industries, Inc.
    Inventor: John A. Cadwell
  • Patent number: 6870109
    Abstract: A system and device for mitigating interference in patient physiological monitoring is provided, particularly in surgical environments. One or more sets of electrodes are placed on a patient's body and connected to corresponding terminals of an input extender. The terminals of the input extender are connected to a set of signal wires encased by a ferrous shielded cable. The ferrous shielded cable connects to a signal processing unit, which includes a differential amplifier and an active drive topology to drive the shield with a common mode signal. The signal processing unit connects to physiological monitoring equipment.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: March 22, 2005
    Assignee: Cadwell Industries, Inc.
    Inventor: Richard A. Villarreal
  • Patent number: 6805668
    Abstract: A system and method for processing patient polysomnograph data are provided. An abstractor obtains raw patient polysomnograph data and generates a subset of the data to include selected factors, including data clusters. The subset of the patient polysomnograph data is transferred to two or more neural networks that process the data and generate sleep classification data. An integrator obtains the sleep classification data from the two or more neural networks by integrating the sleep classification data from each neural network. A cumulative sleep stage score is generated including confidence values and accuracy estimations for review.
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: October 19, 2004
    Assignee: Cadwell Industries, Inc.
    Inventor: John A. Cadwell
  • Patent number: 5631667
    Abstract: A frequency and amplitude measurement tool for electronic displays is provided. The measurement tool automatically draws a measurement scale (24) on an electronic display screen (12) based upon operator inputs from an input device (18). The operator selects a first point (x.sub.0,y.sub.0) by depressing a key (19) on the input device (18), and selects a second point (x.sub.1,y.sub.1) by subsequent movement of the input device (18). The measurement tool draws a measurement scale (24) extending between the first and second points. The measurement scale (24) includes horizontal lines and vertical hash lines (54) that subdivide the horizontal distance between the first and second points so that the frequency calculated is an average frequency over the number of cycles represented by the subdivisions.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: May 20, 1997
    Assignee: Cadwell Industries, Inc.
    Inventor: John A. Cadwell
  • Patent number: 5593429
    Abstract: A needle electrode for use with all types of neurological monitoring equipment. The needle electrode includes a needle portion located at the distal end of the needle electrode. The needle portion is inserted into a patient's muscle to the desired depth in order to perform electromyographic examinations. A shank located at the proximal end of the needle electrode is used to connect the needle electrode to a needle electrode holder and then to monitoring equipment. The needle electrode includes a mid-section located between the needle portion and the shank to regulate the depth to which the needle portion penetrates the patient's muscle, and the depth to which the shank is inserted into a needle electrode holder. The mid-section also maintains the needle electrode holder a specified distance away from the patient's skin to help prevent the needle electrode from being contaminated by the patient's bodily fluids.
    Type: Grant
    Filed: June 28, 1994
    Date of Patent: January 14, 1997
    Assignee: Cadwell Industries, Inc.
    Inventor: Leonard H. Ruff
  • Patent number: 5566678
    Abstract: A method and apparatus for generating an audio accompaniment for digital EEG systems (electroencephalographs) is disclosed. In the past, EEG systems included pen-on-paper EEG recorders to trace a representation of sensed brain wave activity on a strip of paper. This produced varying amounts of auditory noise that corresponded to the amount of brain wave activity which was used by medical technicians monitoring a patient. Digital EEG systems create traces on non-auditory (i.e., CRT) displays. As a result, the auditory feedback provided by the movement of pens on paper and the associated medical benefits have been lost. The invention remedies this problem by providing a method and apparatus that analyzes EEG signals and mimics the sounds that would have been created by the prior art pen-on-paper EEG recorders if the signals had been applied in analog form to such recorders.
    Type: Grant
    Filed: January 5, 1995
    Date of Patent: October 22, 1996
    Assignee: Cadwell Industries, Inc.
    Inventor: John A. Cadwell
  • Patent number: 5482038
    Abstract: A holder (16) for releasably holding needle electrodes (18). The holder (16) includes a body (26) having a base slidably mounted within the body. Depressing the base into the body (26) releases a gripping assembly (50) located within the body (26) allowing a needle electrode (18) inserted into the holder to be removed. Releasing the base (24) causes the gripping assembly to engage a needle electrode inserted into the holder. The gripping mechanism (50) includes a chuck (60) having an opening sized to receive the needle electrode (18). The chuck engages a ferrule (73) that depresses the jaws (70) of the chuck (68) radially inwardly with respect to each other to reduce the size of the opening in the chuck thus holding a needle electrode (18) inserted into the chuck (68).
    Type: Grant
    Filed: June 28, 1994
    Date of Patent: January 9, 1996
    Assignee: Cadwell Industries, Inc.
    Inventor: Leonard H. Ruff
  • Patent number: 5116304
    Abstract: A magnetic stimulator comprising a skullcap-shaped magnetic stimulator coil (13) connected to a suitable power supply (15) is disclosed. More specifically, the coil (13) is wound from bottom to top such that its shape defines a skullcap, i.e., a somewhat flat truncated cone with sides that curve slightly outwardly. While flexible enough to be coiled, the wire (21) used to create the coil has a relatively large AC carrying capacity for its size. The preferred wire is litz wire, or copper strip wire, i.e., wire that has a large periphery/cross-sectional area ratio. A layer of suitably soft material (23) is located on the inside of the coil (13) to provide a cushion between the coil and a human cranium (17) positioned beneath the coil (13). When triggered, the power supply produces sinusoidally fluctuating electrical power adequate to create a magnetic field suitable for stimulating the deeply located neurons (17) of a human cranium (17) positioned beneath the skullcap-shaped coil (13), i.e.
    Type: Grant
    Filed: May 10, 1991
    Date of Patent: May 26, 1992
    Assignee: Cadwell Industries, Inc.
    Inventor: John A. Cadwell
  • Patent number: 5047005
    Abstract: An efficient method and apparatus for magnetically stimulating the neural pathways of a higher level organism, namely the human body, is disclosed. The method includes selectively applying sinusoidally fluctuating electric power to a stimulator coil that overlies the neurons to be stimulated. The frequency of the power and, thus, the period of magnetic field produced by the coil is chosen to correspond to the time constant of the neurons to be stimulated. Realizable values fall in the range of 1.25 to 1.43 times the time constant of the neurons to be stimulated. The current and voltage of the applied power are in phase quadrature with the current lagging the voltage. During the first polarity (e.g., positive) excursion of the applied voltage, the magnetic field produced by the coil is insufficient to stimulate the underlying neurons, i.e., create a neuron depolarizing electric field. Rather, stimulation occurs during the second polarity (e.g., negative) excursion of the applied voltage.
    Type: Grant
    Filed: July 5, 1990
    Date of Patent: September 10, 1991
    Assignee: Cadwell Industries, Inc.
    Inventor: John A. Cadwell
  • Patent number: 4994015
    Abstract: Magnetic stimulator coils having a definable region wherein magnetic field intensity is greater than at other regions of the coil are disclosed. The definable region is formed by one or more corners in a coil and/or by a higher concentration of windings in one region of the coil. Because the magnetic field produced at the definable region of the windings is higher than at other regions, the location where stimulation is to occur is better defined when the definable region of a coil formed in accordance with the invention is suitably positioned on the skin of a patient and energized by a suitable power source. Preferably, the windings are splayed because splayed winding stimulator coils are more efficient than concentrated winding stimulator coils. Efficiency is better because magnetic field intensity is reduced where windings are splayed due to a reduction in mutual inductance.
    Type: Grant
    Filed: February 10, 1989
    Date of Patent: February 19, 1991
    Assignee: Cadwell Industries, Inc.
    Inventor: John A. Cadwell
  • Patent number: 4940453
    Abstract: An efficient method and apparatus for magnetically stimulating the neural pathways of a higher level organism, namely the human body, is disclosed. The method includes selectively applying sinusoidally fluctuating electric power to a stimulator coil that overlies the neurons to be stimulated. The frequency of the power and, thus, the period of magnetic field produced by the coil is chosen to correspond to the time constant of the neurons to be stimulated. Realizable values fall in the range of 1.25 to 1.43 times the time constant of the neurons to be stimulated. The current and voltage of the applied power are in phase quadrature with the current lagging the voltage. During the first polarity (e.g., positive) excursion of the applied voltage, the magnetic field produced by the coil is insufficient to stimulate the underlying neurons, i.e., create a neuron depolarizing electric field. Rather, stimulation occurs during the second polarity (e.g., negative) excursion of the applied voltage.
    Type: Grant
    Filed: January 28, 1987
    Date of Patent: July 10, 1990
    Assignee: Cadwell Industries, Inc.
    Inventor: John A. Cadwell