Patents Assigned to Calypso Medical Technologies, Inc.
  • Publication number: 20090216115
    Abstract: Apparatus and methods for anchoring implanted wireless markers in a patient's body to accurately locate a small target within a soft tissue region. One embodiment of the invention comprises a casing, a transponder partially encased in the casing, and an anchor protruding from the casing. The anchor can either be an extension of the casing or a separate component partly embedded in the casing. Different embodiments of the invention may be well suited for percutaneous implantation and/or surgical implantation.
    Type: Application
    Filed: July 25, 2005
    Publication date: August 27, 2009
    Applicant: Calypso Medical Technologies, Inc.
    Inventors: Keith D. Seiler, Eric Hadford, Lynn M. Purdy
  • Publication number: 20090211027
    Abstract: An apparatus for supporting a patient in radiation therapy and other applications. In one embodiment, the apparatus includes a support structure and a panel carried by the support structure. The support structure can have first and second support members, such as rigid girders or other structures comprising substantially dielectric materials. The panel is also a rigid structure comprising substantially dielectric materials. The panel can further include a pass-through zone or other type of zone that is compatible with an ionizing radiation beam. For example, the panel can have a grid or solid low-density structure that mitigates beam contamination. The support structure and the panel together are configured to position a magnetic marker implanted in the patient in a navigational zone in which a magnetic field transmitted from the marker is not affected by conductive components or loops of conductive material in the pedestals or cantilevered support structures of conventional patient systems.
    Type: Application
    Filed: October 18, 2004
    Publication date: August 27, 2009
    Applicant: CALYPSO MEDICAL TECHNOLOGIES INC.
    Inventors: Steven C. Dimmer, Matthew A. Herron, Edward J. Vertatschitsch
  • Publication number: 20090209852
    Abstract: Systems and methods for locating and tracking a target, i.e., measuring the position and/or rotation of a target during setup and treatment of a patient in guided radiation therapy applications for the head and neck. One embodiment is directed toward a device having a body and markers, such as excitable transponders and/or radiographic fiducials, fixable in or on the body for localizing the body. For example, the body can be a mouthpiece body having a channel configured to receive a patient's teeth such that the mouthpiece is repeatedly and consistently placed in the same relative position in the patient when the patient bites down on the mouthpiece. The transponders can be alternating magnetic transponders and the fiducials can be gold seeds. Other embodiments include a device having a two-piece body, a first piece of the body having excitable transponders and a second piece of the body having radiographic fiducials.
    Type: Application
    Filed: March 2, 2006
    Publication date: August 20, 2009
    Applicant: Calypso Medical Technologies, Inc.
    Inventors: Timothy P. Mate, Steven C. Dimmer, Laurence J. Newell, J. Nelson Wright
  • Publication number: 20090209804
    Abstract: Apparatuses and methods for percutaneously implanting objects, such as radioactive seeds or markers, in patients. In one embodiment, a device for percutaneously implanting an object in a patient includes a handle, a cannula projecting outwardly from the handle, and an actuator movably disposed relative to the handle. In one aspect of this embodiment, the cannula can be configured to releasably hold the object and percutaneously penetrate the patient. In another aspect of this embodiment, the actuator can be operably connected to the cannula and operable to move the cannula relative to the handle and release the object within the patient. In a further aspect of this embodiment, the cannula can include a tip portion having a restriction configured to releasably hold the object for implantation in the patient.
    Type: Application
    Filed: July 25, 2005
    Publication date: August 20, 2009
    Applicant: Calypso Medical technologies, Inc.
    Inventors: Keith Seiler, Eric Hadford, Margo Gisselberg
  • Patent number: 7535363
    Abstract: A miniature resonating marker assembly that includes, in one embodiment, a ferromagnetic core, a wire coil disposed around the core, and a capacitor connected to the wire coil adjacent to the magnetic core. The core, coil, and capacitor form a signal element that, when energized, generates a magnetic field at a selected resonant frequency. The magnetic field has a magnetic center point positioned along at least one axis of the signal element. An inert encapsulation member encapsulates the signal element therein and defines a geometric shape of the resonating marker assembly. The geometric shape has a geometric center point substantially coincident with the magnetic center point along at least a first axis of the signal element. The shape and configuration of the assembly also provides for a miniature signal element specifically tuned to resonate at a selected frequency with a high quality factor.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: May 19, 2009
    Assignee: Calypso Medical Technologies, Inc.
    Inventors: Margo Gisselberg, Eric Hadford, Steven C. Dimmer, Jack Goldberg, Jeff Pelton, Kurt Zublin
  • Publication number: 20080287779
    Abstract: Packaged systems for implanting a marker in a patient and methods for manufacturing and using such systems. In one embodiment, a packaged system comprises an introducer having a cannula and a stylet configured to be received in the cannula, a marker in the cannula, and a package having a sterile compartment. The marker can have a casing configured to be implanted in a patient and a resonating circuit in the casing. The resonating circuit can comprise a coil configured to wirelessly transmit a target signal in response to a wirelessly transmitted excitation signal. The introducer is contained within the sterile compartment. In another embodiment, the marker is not loaded in the introducer within the compartment of the package.
    Type: Application
    Filed: June 27, 2008
    Publication date: November 20, 2008
    Applicant: Calypso Medical Technologies, Inc.
    Inventors: Keith Seiler, Eric Hadford
  • Patent number: 7407054
    Abstract: Packaged systems for implanting a marker in a patient and methods for manufacturing and using such systems. In one embodiment, a packaged system comprises an introducer having a cannula and a stylet configured to be received in the cannula, a marker in the cannula, and a package having a sterile compartment. The marker can have a casing configured to be implanted in a patient and a resonating circuit in the casing. The resonating circuit can comprise a coil configured to wirelessly transmit a target signal in response to a wirelessly transmitted excitation signal. The introducer is contained within the sterile compartment. In another embodiment, the marker is not loaded in the introducer within the compartment of the package.
    Type: Grant
    Filed: May 10, 2005
    Date of Patent: August 5, 2008
    Assignee: Calypso Medical Technologies, Inc.
    Inventors: Keith Seiler, Eric Hadford
  • Publication number: 20080021308
    Abstract: A leadless marker for localizing the position of a target within a patient. In one embodiment, the marker includes a casing, a resonating circuit, and a ferromagnetic element. The casing is configured to be positioned at a selected location relative to a target site in the patient; the casing, for example, can be configured to be permanently or semi-permanently implanted into the patient. The resonating circuit has an inductor within the casing comprising a plurality of windings of a conductor, but it does not have external electrical lead lines extending through the casing. The ferromagnetic element is at least partially within the inductor. The ferromagnetic element has a volume such that when the marker is in an imaging magnetic field having a field strength of 1.5 T and a gradient of 3 T/m, then the force exerted on the marker by the imaging magnetic field is not greater than gravitational force exerted on the marker.
    Type: Application
    Filed: September 27, 2007
    Publication date: January 24, 2008
    Applicant: Calypso Medical Technologies, Inc.
    Inventors: Steven Dimmer, Eric Hadford
  • Publication number: 20080001756
    Abstract: A system for generating a magnetic field for excitation of a leadless marker assembly. The system of at least one embodiment includes a source generator that generates a plurality of alternating electrical signals each having an independently adjustable phase. A plurality of excitation coils are configured to simultaneously receive a respective one of the alternating electrical signals at a selected phase to generate a magnetic field. The phase of the alternating electrical signal for each excitation coil is independently adjustable relative to the phase of the alternating electrical signal for the other excitation coils so as to adjust the magnetic field from the respective coil. The magnetic fields from the excitation coils combine to form a spatially adjustable excitation field for excitation of the remote leadless marker assembly.
    Type: Application
    Filed: January 26, 2007
    Publication date: January 3, 2008
    Applicant: Calypso Medical Technologies, Inc.
    Inventors: Steven Dimmer, J. Wright, William Mayo
  • Publication number: 20070265491
    Abstract: Systems and methods for stabilizing a target location within a human body. One embodiment of the system provides a tissue anchor for holding a tissue mass within a human body. The tissue anchor may include a lead; a tissue fastener coupled to the lead; and a marker which can be detected by a position detection system to facilitate placement of the anchor. The tissue anchor can be used to help stabilize tissue in a surgical procedure, e.g., in excising a lesion in amorphous, pliable tissue (e.g., breast tissue) or other body parts.
    Type: Application
    Filed: December 6, 2006
    Publication date: November 15, 2007
    Applicant: Calypso Medical Technologies, Inc.
    Inventors: David Krag, Steve Dimmer
  • Patent number: 7289839
    Abstract: A leadless marker for localizing the position of a target within a patient. In one embodiment, the marker includes a casing, a resonating circuit, and a ferromagnetic element. The casing is configured to be positioned at a selected location relative to a target site in the patient; the casing, for example, can be configured to be permanently or semi-permanently implanted into the patient. The resonating circuit has an inductor within the casing comprising a plurality of windings of a conductor, but it does not have external electrical lead lines extending through the casing. The ferromagnetic element is at least partially within the inductor. The ferromagnetic element has a volume such that when the marker is in an imaging magnetic field having a field strength of 1.5 T and a gradient of 3 T/m, then the force exerted on the marker by the imaging magnetic field is not greater than gravitational force exerted on the marker.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: October 30, 2007
    Assignee: Calypso Medical Technologies, Inc.
    Inventors: Steven C. Dimmer, Eric Hadford
  • Patent number: 7247160
    Abstract: Apparatuses and methods for percutaneously implanting objects, such as radioactive seeds or markers, in patients. In one embodiment, a device for percutaneously implanting an object in a patient includes a handle, a cannula projecting outwardly from the handle, and an actuator movably disposed relative to the handle. In one aspect of this embodiment, the cannula can be configured to releasably hold the object and percutaneously penetrate the patient. In another aspect of this embodiment, the actuator can be operably connected to the cannula and operable to move the cannula relative to the handle and release the object within the patient. In a further aspect of this embodiment, the cannula can include a tip portion having a restriction configured to releasably hold the object for implantation in the patient.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: July 24, 2007
    Assignee: Calypso Medical Technologies, Inc.
    Inventors: Keith Seiler, Eric Hadford
  • Publication number: 20070057794
    Abstract: A miniature resonating marker assembly that includes, in one embodiment, a ferromagnetic core, a wire coil disposed around the core, and a capacitor connected to the wire coil adjacent to the magnetic core. The core, coil, and capacitor form a signal element that, when energized, generates a magnetic field at a selected resonant frequency. The magnetic field has a magnetic center point positioned along at least one axis of the signal element. An inert encapsulation member encapsulates the signal element therein and defines a geometric shape of the resonating marker assembly. The geometric shape has a geometric center point substantially coincident with the magnetic center point along at least a first axis of the signal element. The shape and configuration of the assembly also provides for a miniature signal element specifically tuned to resonate at a selected frequency with a high quality factor.
    Type: Application
    Filed: November 13, 2006
    Publication date: March 15, 2007
    Applicant: Calypso Medical Technologies, Inc.
    Inventors: Margo Gisselberg, Eric Hadford, Steven Dimmer, Jack Goldberg, Jeff Pelton, Kurt Zublin
  • Patent number: 7176798
    Abstract: A system for generating a magnetic field for excitation of a leadless marker assembly. The system of at least one embodiment includes a source generator that generates a plurality of alternating electrical signals each having an independently adjustable phase. A plurality of excitation coils are configured to simultaneously receive a respective one of the alternating electrical signals at a selected phase to generate a magnetic field. The phase of the alternating electrical signal for each excitation coil is independently adjustable relative to the phase of the alternating electrical signal for the other excitation coils so as to adjust the magnetic field from the respective coil. The magnetic fields from the excitation coils combine to form a spatially adjustable excitation field for excitation of the remote leadless marker assembly.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: February 13, 2007
    Assignee: Calypso Medical Technologies, Inc.
    Inventors: Steven C. Dimmer, J. Nelson Wright, William T. Mayo
  • Publication number: 20060276680
    Abstract: Apparatuses and methods for percutaneously implanting objects, such as radioactive seeds or markers, in patients. In one embodiment, a device for percutaneously implanting an object in a patient includes a handle, a cannula projecting outwardly from the handle, and an actuator movably disposed relative to the handle. In one aspect of this embodiment, the cannula can be configured to releasably hold the object and percutaneously penetrate the patient. In another aspect of this embodiment, the actuator can be operably connected to the cannula and operable to move the cannula relative to the handle and release the object within the patient. In a further aspect of this embodiment, the cannula can include a tip portion having a restriction configured to releasably hold the object for implantation in the patient.
    Type: Application
    Filed: August 16, 2006
    Publication date: December 7, 2006
    Applicant: Calypso Medical Technologies, Inc.
    Inventors: Keith Seiler, Eric Hadford
  • Patent number: 7135978
    Abstract: A miniature resonating marker assembly that includes, in one embodiment, a ferromagnetic core, a wire coil disposed around the core, and a capacitor connected to the wire coil adjacent to the magnetic core. The core, coil, and capacitor form a signal element that, when energized, generates a magnetic field at a selected resonant frequency. The magnetic field has a magnetic center point positioned along at least one axis of the signal element. An inert encapsulation member encapsulates the signal element therein and defines a geometric shape of the resonating marker assembly. The geometric shape has a geometric center point substantially coincident with the magnetic center point along at least a first axis of the signal element. The shape and configuration of the assembly also provides for a miniature signal element specifically tuned to resonate at a selected frequency with a high quality factor.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: November 14, 2006
    Assignee: Calypso Medical Technologies, Inc.
    Inventors: Margo Gisselberg, Eric Hadford, Steven C. Dimmer, Jack Goldberg, Jeff Pelton, Kurt Zublin
  • Publication number: 20060094923
    Abstract: Apparatus and methods for treating a patient using radiation therapy. In one embodiment, an apparatus comprises a tube configured to receive a radiation source and an expandable member. The tube has a first end configured to be inserted into a patient and a second end that is generally configured to remain external to the patient. The expandable member is at the first end of the tube, and it is configured to contain the radiation source. The expandable member can comprise a balloon, flexible bladder, mechanical linkage (e.g., a cage), a mesh, or other suitable expandable systems. The apparatus further includes a marker associated with the expandable member such that the marker moves with the expandable member.
    Type: Application
    Filed: October 3, 2005
    Publication date: May 4, 2006
    Applicant: Calypso Medical Technologies, Inc.
    Inventor: Timothy Mate
  • Patent number: 7026927
    Abstract: A receiver for determining the location of a marker that is excited with an exciting waveform. A sensing array having coils is used to sense magnetic flux from the resonating marker. The coils provide inputs to the receiver. The receiver includes a correlation processor for analyzing the inputs in a coherent manner. Further, the exciting waveform is repeated with random dithering in order to eliminate system noise.
    Type: Grant
    Filed: December 31, 2003
    Date of Patent: April 11, 2006
    Assignee: Calypso Medical Technologies, Inc.
    Inventors: J. Nelson Wright, Laurence J. Newell
  • Publication number: 20060063999
    Abstract: A facility for presenting a visual user interface for guiding the performance of a process relating to a patient localization and tracking system is described. The facility displays the user interface in a first state that corresponds to a first process task in an ordered sequence of process tasks. Each time the process task to which the displayed state of the user interface corresponds is completed, the facility redisplays the user interface in a state corresponding to a process task following the process task to which the displayed state of the user interface corresponds.
    Type: Application
    Filed: July 25, 2005
    Publication date: March 23, 2006
    Applicant: Calypso Medical Technologies, Inc.
    Inventors: Matthew Herron, Brian Epps, Kevin Rolfes, David Swanson, Luis Retana
  • Patent number: 6977504
    Abstract: A receiver for determining the location of a marker that is excited with an exciting waveform. A sensing array having coils is used to sense magnetic flux from the resonating marker. The coils provide inputs to the receiver. The receiver includes a correlation processor for analyzing the inputs in a coherent manner. The receiver determines the phase component of each of the inputs and compensates for differences.
    Type: Grant
    Filed: December 31, 2003
    Date of Patent: December 20, 2005
    Assignee: Calypso Medical Technologies, Inc.
    Inventors: J. Nelson Wright, Laurence J. Newell