Abstract: Display driver circuits for driving an organic light emitting diode display, particularly a passive matrix display with greater efficiency are described. The display includes at least one electroluminescent display element, and the driver includes at least one substantially constant current generator for driving the display element. The display driver control circuitry includes a drive voltage sensor for sensing a voltage on a first line in which the current is regulated by the constant current generator; and a voltage controller coupled to the drive voltage sensor for controlling the voltage of a supply for the constant current generator in response to said sensed voltage, and configured to control the supply voltage to increase the efficiency of said display driver.
Abstract: A process for the preparation of a polymerizable unit for production of a hole transporting polymer for use in an optical device, which process comprises reacting in the presence of S to form wherein each R is the same or different and is independently H or a substituent group; n is O or an integer from 1 to 100; Ar and Ar? are the same or different and are each aromatic or heteroaromatic groups which are substituted or unsubstituted; Y is a direct bond, a light emissive moiety, a hole transporting moiety or an electron transporting moiety; and X is a polymerizable group.
Abstract: Optical devices fabricated from solvent processible polymers suffer from susceptibility to solvents and morphological changes. A semiconductive polymer capable of luminescence in an optical device is provided. The polymer comprises a luminescent film-forming solvent processible polymer which contains cross-linking so as to increase its molar mass and to resist solvent dissolution, the cross-linking being such that the polymer retains semiconductive and luminescent properties.
Type:
Grant
Filed:
July 18, 2005
Date of Patent:
September 14, 2010
Assignee:
Cambridge Display Technology Ltd.
Inventors:
Andrew Bruce Holmes, Xiao-Chang Li, Stephen Carl Moratti, Kenneth Andrew Murray, Richard Henry Friend
Abstract: A method of fabricating a self-aligned top-gate organic transistor comprises depositing a photoresist material over the dielectric material, and exposing the photoresist material to irradiation through the substrate using the source and drain electrodes as a mask. The exposure defines a region for deposition of the gate electrode.
Abstract: A passive matrix display comprising an array of diodes disposed between a plurality of anode lines and a plurality of cathode lines, wherein at least some of the diodes are emissive diodes which are orientated in a forward direction relative to the cathode and anode lines and others of the diodes are sensing diodes orientated in a reverse direction relative to the cathode and anode lines.
Abstract: An organic light-emitting device, comprising: a substrate; a first conductive layer formed over the substrate; at least one layer of a light-emissive organic material formed over the first conductive layer; a barrier layer formed over the at least one organic layer which acts to protect the at least one layer of organic material; and a second conductive layer, preferably a patterned sputtered layer, formed over the barrier layer.
Abstract: A method of manufacturing an organic thin film transistor, the method comprising: depositing a source and drain electrode; forming a thin self-assembled layer of material on the source and drain electrodes, the thin self-assembled layer of material comprising a dopant moiety for chemically doping an organic semi-conductive material by accepting or donating charge and a separate attachment moiety bonded to the dopant moiety and selectively bonded to the source and drain electrodes; and depositing a solution comprising a solvent and an organic semi-conductive material in a channel region between the source and drain electrode.
Abstract: An organic light emissive device including a cathode; an anode; and an organic light emissive region between the cathode and the anode, wherein the cathode includes a transparent bilayer comprising a layer of a low work function metal having a work function of no more than 3.5 eV and a transparent layer of silver.
Abstract: A combined information display and information input device comprising a matrix of independently addressable light emitting devices and a plurality of light sensing devices, the light emitting devices comprising organic light emitting diodes comprising organic light emitting material positioned between a low work function electrode and a high work function electrode characterized in that the light sensing devices comprise organic photovoltaic devices comprising at least an organic electron donor and at least an organic electron acceptor positioned between a high work function electrode and a low work function electrode. The combined information display and information input device has application as a touch screen, for example for a mobile communication device.
Abstract: A light-emissive device is prepared by depositing a polymer layer on a substrate. The deposition process utilizes a formulation comprising a conjugated polymer dissolved in a solvent, the solvent including a trialkyl-substituted aromatic hydrocarbon wherein at least two of the alkyl substituents are ortho to one another. The deposition of the polymer layer on the substrate may be accomplished by an ink-jet method.
Abstract: This invention generally relates to apparatus and methods for driving passive, electro-optic displays with greater efficiency. The invention is particularly suitable for driving passive matrix organic light emitting diode displays.
Abstract: An active matrix organic optical device comprising a plurality of organic thin film transistors and a plurality of pixels disposed on a common substrate, wherein a common bank layer is provided for the organic thin film transistors and the pixels, the common bank layer defining a plurality of wells, wherein some of the wells contain the organic semiconducting material of the organic thin film transistors therein and others of the wells contain organic optically active material of the pixels therein.
Type:
Application
Filed:
April 3, 2008
Publication date:
April 29, 2010
Applicant:
CAMBRIDGE DISPLAY TECHNOLOGY LIMITED
Inventors:
Jeremy Henley Burroughes, Mark Bale, Mark Garbett, Jonathan J. Halls
Abstract: A light-emissive device is prepared by depositing a polymer layer on a substrate. The deposition process utilizes a formulation comprising a conjugated polymer dissolved in a solvent, the solvent including a trialkyl-substituted aromatic hydrocarbon wherein at least two of the alkyl substituents are ortho to one another. The deposition of the polymer layer on the substrate may be accomplished by an ink-jet method.
Abstract: A polymer for use in an optical device comprising a first, optionally substituted, repeat unit of formula and a second, optionally substituted, repeat unit of formula wherein each Ar and Ar? is the same or different and comprises an optionally substituted aryl or heteroaryl group and optionally a third, optionally substituted, repeat unit in a molar ratio of no greater than 5%, the third repeat unit having a formula —Ar—N(Ar)—Ar— and having a single nitrogen atom in its backbone.
Type:
Grant
Filed:
May 9, 2003
Date of Patent:
April 13, 2010
Assignee:
Cambridge Display Technology Limited
Inventors:
Richard O'Dell, Carl Towns, Brian Tierney, Stephen O'Connor, Ilaria Grizzi, Clare L. Foden, Nalinkumar Patel, Mark L. Leadbeater, Lorraine Murtagh
Abstract: A method of making a top-gate organic thin film transistor, comprising forming source and drain contacts on a substrate; oxidizing portions of the source and drain contacts; depositing an organic semiconductor layer to form a bridge between the oxidized portions of the source and drain contacts; depositing a gate insulating layer over the organic semiconductor layer; and forming a gate electrode over the gate insulating layer.
Abstract: A light-emissive device is prepared by depositing a polymer layer on a substrate. The deposition process utilizes a formulation comprising a conjugated polymer dissolved in a solvent, the solvent including a trialkyl-substituted aromatic hydrocarbon wherein at least two of the alkyl substituents are ortho to one another. The deposition of the polymer layer on the substrate may be accomplished by an ink-jet method.
Abstract: A conductive polymer composition comprising: a polymer having a HOMO level greater than or equal to ?5.7 eV and a dopant having a LUMO level less than ?4.3 eV.
Type:
Application
Filed:
September 7, 2007
Publication date:
March 11, 2010
Applicants:
CAMBRIDGE DISPLAY TECHNOLOGY LIMITED, CAMBRIDGE UNIVERSITY TECHNICAL SERVICES LIMITED
Inventors:
Jeremy Burroughes, Keng Hoong Yim, Ji-Seon Kim
Abstract: A soluble luminescent polymer comprising a first repeat unit [Ar1] and a second repeat unit comprising a unit of general formula (I) which is substituted or unsubstituted: wherein X is RC?CR, S, O or NR; Ar1, Ar2 and Ar3 are each independently an aromatic or heteroaromatic group; and each R independently is hydrogen or a substituent group.
Abstract: An organic thin film transistor comprising: a substrate; a source electrode and a drain electrode defining a channel; a layer of insulating material disposed over the source and drain electrodes; a layer of organic semi-conductive material extending across the channel; a layer of dielectric material; and a gate electrode disposed over the layer of dielectric material.
Abstract: A method of forming an organic thin film transistor comprising: providing a structure comprising source and drain electrodes with a channel region therebetween, a gate electrode, and a dielectric layer disposed between the source and drain electrodes and the gate electrode; and patterning the dielectric layer using the source and drain electrodes as a mask to form a region of dielectric material in the channel region which is thinner than regions of dielectric material adjacent the channel region.