Patents Assigned to Cambridge NanoTech, Inc.
  • Patent number: 8202575
    Abstract: Vapor deposition systems and methods associated with the same are provided. The systems may be designed to include features that can promote high quality deposition; simplify manufacture, modification and use; as well as, reduce the footprint of the system, amongst other advantages.
    Type: Grant
    Filed: June 27, 2005
    Date of Patent: June 19, 2012
    Assignee: Cambridge NanoTech, Inc.
    Inventors: Douwe J. Monsma, Jill S. Becker
  • Publication number: 20120141676
    Abstract: An ALD coating system (100) includes a fixed gas manifold (710, 1300) disposed over a moving substrate with a coating surface of the substrate facing precursor orifice plate (930). A gas control system (1400) delivers gas or vapor precursors and inert gas into the fixed gas manifold which directs input gases onto a coating surface of the moving substrate. The gas control system includes a blower (1485) interfaced with the gas manifold which draws gas through the gas manifold to remove unused precursors, inert gas and reaction byproduct from the coating surface. The gas manifold is configured segregate precursor gases at the coating surface to prevent the mixing of dissimilar precursors. The gas manifold may also segregate unused precursor gases in the exhaust system so that the unused precursors can be recovered and reused.
    Type: Application
    Filed: October 14, 2011
    Publication date: June 7, 2012
    Applicant: Cambridge NanoTech Inc
    Inventors: Michael J. Sershen, Ganesh M. Sundaram, Roger R. Coutu, Jill Svenja Becker, Mark J. Dalberth
  • Publication number: 20120064245
    Abstract: A gas deposition system (1000) configured as a dual-chamber “tower” includes a frame (1140) for supporting two reaction chamber assemblies (3000), one vertically above the other. Each chamber assembly (3000) includes an outer wall assembly surrounding a hollow chamber (3070) sized to receive a single generation 4.5 (GEN 4.5) glass plate substrate through a load port. The substrate is disposed horizontally inside the hollow chamber (3070) and the chamber assembly (3000) includes removable and cleanable triangular shaped input (3150) and output (3250) plenums disposed external to the hollow chamber (3070) and configured to produce substantially horizontally directed laminar gas flow over a top surface of the substrate. Each chamber includes a cleanable and removable chamber liner assembly (6000) disposed inside the hollow chamber (3070) to contain precursor gases therein thereby preventing contamination of chamber outer walls (3010, 3020, 3030, 3040).
    Type: Application
    Filed: February 26, 2010
    Publication date: March 15, 2012
    Applicant: Cambridge NanoTech Inc.
    Inventors: Roger R. Coutu, Jill Svenja Becker, Ganesh M. Sundaram, Eric W. Deguns
  • Publication number: 20110311726
    Abstract: An improved precursor vaporization device and method for vaporizing liquid and solid precursors having a low vapor pressure at a desired precursor temperature includes elements and operating methods for injecting an inert gas boost pulse into a precursor container prior to releasing a precursor pulse to a reaction chamber. An improved ALD system and method for growing thin films having more thickness and thickness uniformity at lower precursor temperatures includes devices and operating methods for injecting an inert gas boost pulse into a precursor container prior to releasing a precursor pulse to a reaction chamber and for releasing a plurality of first precursor pulses into a reaction chamber to react with substrates before releasing a different second precursor pulse into the reaction chamber to react with the substrates.
    Type: Application
    Filed: June 17, 2011
    Publication date: December 22, 2011
    Applicant: Cambridge NanoTech Inc.
    Inventors: Guo Liu, Adam Bertuch, Eric W. Deguns, Mark J. Dalberth, Ganesh M. Sundaram, Jill Svenja Becker
  • Publication number: 20100247763
    Abstract: A reaction chamber assembly for thin film deposition processes or the like includes an outer wall assembly for enclosing an outer volume and a removable liner installed into the outer volume through an outer aperture for preventing precursors or reactants from coming into contact with internal surfaces of the outer wall assembly and forming thin film layers thereon. The removable liner encloses a reaction chamber and includes substrate support trays or the like for supporting substrates being coated. Thin film layers are formed onto internal surfaces of the removable liner instead of onto surfaces of the outer wall assembly. The removable liner may be disposable or may comprise stainless steel, which can be removed when contaminated, cleaned by abrasive blasting such as bead blasting, and replaced. Two removable liners can be used to periodically swap removable liners and clean one of the liners while the other is in service with minimal disruption to production coating schedules.
    Type: Application
    Filed: October 30, 2009
    Publication date: September 30, 2010
    Applicant: Cambridge NanoTech Inc.
    Inventors: Roger R. Coutu, Jill S. Becker, Douwe J. Monsma
  • Publication number: 20100183825
    Abstract: An improved gas deposition chamber includes a hollow gas deposition volume formed with a volume expanding top portion and a substantially constant volume cylindrical middle portion. The hollow gas deposition volume may include a volume reducing lower portion. An aerodynamically shaped substrate support chuck is disposed inside gas deposition chamber with a substrate support surface positioned in the constant volume cylindrical middle portion. The volume expanding top portion reduces gas flow velocity between gas input ports and the substrate support surface. The aerodynamic shape of the substrate support chuck reduces drag and helps to promote laminar flow over the substrate support surface. The volume reducing lower portion helps to increase gas flow velocity after the gas has past the substrate support surface. The improved gas deposition chamber is configurable to 200 mm diameter semiconductor wafers using ALD and or PALD coating cycles.
    Type: Application
    Filed: December 28, 2009
    Publication date: July 22, 2010
    Applicant: Cambridge NanoTech Inc.
    Inventors: Jill S. Becker, Roger R. Coutu, Douwe J. Monsma
  • Publication number: 20100166955
    Abstract: A reaction chamber assembly suitable for forming thin film deposition layers onto solid substrates includes a reaction chamber and an input plenum for receiving source material from gas source containers and delivering a flow of source material into the reaction chamber uniformly distributed across a substrate support width. An output plenum connected between the reaction chamber and a vacuum pump uniformly removes an outflow of material from the reaction chamber across the substrate support width. The input plenum is configured to expand a volume of the source material and deliver the source material to the substrate support area with uniform source material flow distribution across the substrate support width. The output plenum is configured to remove the outflow material across the entire substrate support width and to compress the volume of outflow material prior to the outflow material exiting the output plenum.
    Type: Application
    Filed: October 30, 2009
    Publication date: July 1, 2010
    Applicant: Cambridge NanoTech Inc.
    Inventors: Jill S. Becker, Roger R. Coutu, Douwe J. Monsma
  • Publication number: 20060021573
    Abstract: Vapor deposition systems and methods associated with the same are provided. The systems may be designed to include features that can promote high quality deposition; simplify manufacture, modification and use; as well as, reduce the footprint of the system, amongst other advantages.
    Type: Application
    Filed: June 27, 2005
    Publication date: February 2, 2006
    Applicant: Cambridge NanoTech Inc.
    Inventors: Douwe Monsma, Jill Becker