Abstract: A multi-cable transit may include a plurality of modules disposed within the frame assembly; each of the plurality of modules comprising: an upper housing, a lower housing disposed opposite the upper housing; and a plurality of upper layers and a plurality of lower layers disposed between the upper housing and the lower housing; and a compression wedge unit connected between the frame assembly and the plurality of modules, wherein expansion of the compression wedge unit compresses the plurality of modules within the frame assembly to form a gas-tight seal within the plurality of modules. A single cable transit may include a pair of component halves, each of the pair of component halves comprising: a u-shaped body having a curved outer surface and contoured inner surface; a plurality of interlocking layers; and a compression member configured to axially compress the u-shaped body.
Type:
Application
Filed:
January 5, 2023
Publication date:
July 13, 2023
Applicant:
CAPE Industries, LLC
Inventors:
Allen Todd GIBSON, Solomon Otto WHITAKER, Melissa A. VER MEER
Abstract: A cable gland and method for earthing, bonding, and electromagnetic capability with armored, metal-clad, and metallic-sheathed cable types. The cable gland includes compressible fingers with the ability to compress or expand about a cable inserted in and through the cable gland, and an adjustable earthing coil arranged internally inside a part of the cable gland that secures around a cable inserted in the cable gland. When fully coiled, the adjustable earthing coil is relaxed and as the adjustable earthing coil is expanded it generates a restoring force. An earthing strap attached to the adjustable earthing coil in the cable gland, provides grounding capabilities to the cable gland.
Abstract: A cable gland and method for earthing, bonding, and electromagnetic capability with armored, metal-clad, and metallic-sheathed cable types. The cable gland includes an adjustable earthing coil arranged internally in a gland body of the cable gland that secures around a cable inserted in the cable gland. When fully coiled, the adjustable earthing coil is relaxed and as the adjustable earthing coil is expanded it generates a restoring force. An earthing strap attached to the adjustable earthing coil in the cable gland, provides grounding capabilities to the cable gland.
Abstract: Polyester polyols are prepared by reacting a multifunctional adduct (e.g., maleic anhydride (MA)) and tall oil fatty acid, (TOFA), and then esterifying/transesterifying the MA/TOFA reaction product with an excess of aromatic polyester polyols (preferably such polyols are produced from dimethyl terephthalate (DMT) process residue and polyhydric alcohols). The polyester polyols may be used in the manufacture of rigid polyurethane (PUR) and rigid urethane-modified polyisocyanurate (PUR/PIR) foams.
Abstract: A polyester polyol composition is prepared by (1) reacting 5 to 40 percent tall oil fatty acids, (b) 20 to 80 percent dimethyl terephthalate process residue and (c) 20 to 60 percent polyhydric alcohol, based on the weight of the reaction mixture, in the presence of an esterification/transesterification catalyst while continuously removing water and methanol that are formed during the reaction, to form a first reaction product containing residual carboxylic acid functionality and (2) reacting 1 to 25 percent of at least one alkylene carbonate, or an equimolar amount of at least one alkylene oxide, with the residual carboxylic acid functionality in the presence of a catalyst. The preferred alkylene carbonate/oxide is ethylene or propylene (or a mixture thereof) carbonate/oxide. A foamed laminate made from the polyester polyol has reduced surface friability and faster rates of cure.