Patents Assigned to Cardea Bio, Inc.
  • Patent number: 11782057
    Abstract: An integrated circuit (IC) chip includes ROIC circuitry in a CMOS wafer with a top dielectric layer and at least one graphene field effect transistor (gFET) sensor array added above the CMOS wafer. The IC chip includes access transistors controlled by the ROIC circuitry and further includes sensing circuitry which includes the at least one gFET sensor array and a passivation opening that allows direct contact of a sample liquid with the graphene channels of the gFETs in the at least one gFET sensor array, such that a liquid gate is formed above the graphene channel upon receipt of the sample liquid. In some examples, the IC chip includes a process, memory controller, and memory. A system and a method have similar structures and perform the functions of the apparatus.
    Type: Grant
    Filed: November 17, 2021
    Date of Patent: October 10, 2023
    Assignee: Cardea Bio, Inc.
    Inventors: Brett R. Goldsmith, Mitchell Lerner, Paul Hoffman
  • Patent number: 11732296
    Abstract: An apparatus includes a biosensor integrated circuit (IC) chip having multiple well structures configured to receive a liquid comprising one or more biological analytes. The well structures include a passivation layer with an opening over one or more field effect transistors (gFETs) which include a layer of 2D channel material selected from molybdenum disulfide (MoS2) and graphene; a drain electrode connected to a first end of the channel; a source electrode connected to a second end of the channel, wherein the individual gFETs are configured such that liquid received by the well structure is confined to form a liquid gate above a top surface of the channel. A system and method perform various functions of the apparatus.
    Type: Grant
    Filed: April 2, 2021
    Date of Patent: August 22, 2023
    Assignee: Cardea Bio, Inc.
    Inventors: Pieter van Rooyen, Mitchell Lerner, Paul Hoffman, Brett R. Goldsmith
  • Patent number: 11713455
    Abstract: For enhanced selection of efficient targeted genome manipulating agents, an apparatus includes first and second chip-based biosensors having one or more sensing surfaces configured to detect biomolecular binding interactions between a nucleic acid sample and a targeted genome manipulating agent functionalized to a capture surface within a sensing range of the one or more sensing surfaces. The first chip-based biosensor uses a nucleic acid sample incubated with a blocking agent that blocks on-target binding and the second chip-based biosensor holds a nucleic acid sample that omits the blocking agent. A measurement apparatus measures first and second sets of response signals produced in response to the biomolecular binding interactions occurring between the nucleic acid sample and the targeted genome manipulating agent. An analysis module determines the genome manipulating efficiency parameters of the targeted genome manipulating agent. A system and a method perform the functions of the apparatus.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: August 1, 2023
    Assignee: Cardea Bio, Inc.
    Inventors: Regis Peytavi, Kiana Aran, Brett Goldsmith, Alexander Kane
  • Patent number: 11536722
    Abstract: An apparatus includes a biosensor integrated circuit (IC) chip with sensing zones and/or well structures configured to receive a liquid with biological analytes. The chip includes a passivation layer with an opening over a channel layer and an array of graphene field effect transistors (gFETs) individually having a 2D graphene channel disposed on a dielectric oxide layer, a conductive drain, and a conductive source. A liquid gate is formed above the top surface of the graphene channel. The chip further includes reference electrodes formed in a metal layer, configured to contact the liquid, and disposed at a horizontal distance apart from the graphene channels. The individual gFETs are operable to enable a set of measurements to sense parameters of the biological analytes based on changes in a shape of Id-Vgs transconductance curves. A system and a method have similar structures and perform the functions of the apparatus.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: December 27, 2022
    Assignee: Cardea Bio, Inc.
    Inventors: Brett R. Goldsmith, Mitchell Lerner, Paul Hoffman
  • Patent number: 11215580
    Abstract: A DNA sequencing and blood chemistry analysis system and method are provided including one or more sensor chips and one or more sample wells, wherein each sample well is configured to form a seal with one of the sensors. The one or more sensor chips may comprise Graphene transistors, and each transistor having an associated sequencing probe. The sensor chips interact with a biological sample introduced into the sample well, wherein changes in the current, transconductance, and resistance of the Graphene transistors are indicative of a DNA binding process. Based on the associated sequencing probes, the DNA sequence present in a biological sample can be identified.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: January 4, 2022
    Assignee: Cardea Bio, Inc.
    Inventor: Brett Goldsmith
  • Patent number: 11092598
    Abstract: A chemically differentiated sensor array system includes a plurality of environmentally-gated transistors and an environmental gate, wherein the environmental gate includes a liquid solution and each environmentally-gated transistor includes a drain, a source, and a Carbon-based substrate channel, the drain electrically couples to a first location on the substrate channel, the source electrically couples to a second location on the substrate channel separated by a gap from the first location on the substrate channel, the environmental gate covers and contacts the substrate channel, a first insulating layer covers and separates the drain from the environmental gate, and a second insulating layer covers and separates the source from the environmental gate.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: August 17, 2021
    Assignee: Cardea Bio, Inc.
    Inventor: Brett Goldsmith
  • Patent number: 11056343
    Abstract: Embodiments of the disclosed technology include patterning a graphene sheet for biosensor and electronic applications using lithographic patterning techniques. More specifically, the present disclosure is directed towards the method of patterning a graphene sheet with a hard mask metal layer. The hard mask metal layer may include an inert metal, which may protect the graphene sheet from being contaminated or damaged during the patterning process.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: July 6, 2021
    Assignee: Cardea Bio, Inc.
    Inventors: Deng Pan, Brett Goldsmith
  • Patent number: 11016088
    Abstract: This invention concerns Chemically-sensitive Field Effect Transistors (ChemFETs) that are preferably fabricated using semiconductor fabrication methods on a semiconductor wafer, and in preferred embodiments, on top of an integrated circuit structure made using semiconductor fabrication methods. The instant ChemFETs typically comprise a conductive source, a conductive drain, and a channel composed of a one-dimensional (1D) or two-dimensional (2D) transistor nanomaterial, which channel extends from the source to the drain and is fabricated using semiconductor fabrication techniques on top of a wafer. The ChemFET also includes a gate, often the gate voltage is provided through a fluid or solution proximate the ChemFET. Such ChemFETs, preferably configured in independently addressable arrays, may be employed to detect a presence and/or concentration changes of various analyte types in chemical and/or biological samples, including nucleic acid hybridization and/or sequencing reactions.
    Type: Grant
    Filed: September 28, 2019
    Date of Patent: May 25, 2021
    Assignee: Cardea Bio, Inc.
    Inventors: Paul Hoffman, Brett R. Goldsmith, Mitchell Lerner
  • Patent number: 10968481
    Abstract: Chemically-sensitive field effect transistors for biosensor chips and system are disclosed. The itransisitors have a multi-layered structure for performing a set of measurements of a biological reaction involving a binding event for one or more biological analytes that may be label-free. The multilayer structure includes a first insulating layer above a substrate layer and a source electrode and a drain electrode disposed positioned over the first insulating layer; a second insulating layer above the first insulating layer and proximate the source and drain electrodes forming side wall members of a well for a fluid comprising the analytes; a 2D graphene layer forming a channel between source and drain electrodes; a solution gate, formed by fluid flowed over the channel, configured to enable determining differences between one or more sample I-Vg curves having a shifted and changed shape relative to a reference curve; embodiments may include ion-selective membranes and/or ion getters.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: April 6, 2021
    Assignee: Cardea Bio, Inc.
    Inventors: Pieter van Rooyen, Mitchell Lerner, Paul Hoffman, Brett R. Goldsmith