Patents Assigned to Cardiac Pacemaker, Inc.
  • Patent number: 11963756
    Abstract: Systems and methods to provide remote patient monitoring for viral-respiratory symptoms, including coronavirus or COVID-19 symptoms are disclosed, including a signal receiver circuit configured to receive first and second physiologic information of a patient, the first physiologic information comprising respiration rate information of a patient and the second physiologic information different than the first physiologic information, and an assessment circuit configured to determine an indication of patient viral-respiratory disease using the received first and second physiologic information.
    Type: Grant
    Filed: September 8, 2021
    Date of Patent: April 23, 2024
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Craig Stolen, Pramodsingh Hirasingh Thakur, Rezwan Ahmed, Viktoria A. Averina
  • Patent number: 11950915
    Abstract: Methods and/or device facilitating and selecting among multiple modes of filtering a cardiac electrical signal, in which one filtering mode includes additional high pass filtering of low frequency signals, relative to the other filtering mode. The selection filtering modes may include comparing sensed signal amplitude to one or more thresholds, using the multiple modes of filtering. In another example, an additional high pass filter is enabled, over and above a default or baseline filtering mode, and the detected cardiac signal is monitored for indications of possible undersensing, and/or for drops in amplitude toward a threshold, and the additional high pass filter may be disabled upon finding of possible undersensing or drop in signal amplitude.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: April 9, 2024
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Venugopal Allavatam, Stephen J. Hahn, Keith L. Herrmann, Mitchell D. Lanz, Krzysztof Z. Siejko, Benjamin Speakman
  • Patent number: 11944430
    Abstract: Systems, devices, and methods for monitoring and assessing blood glucose level in a patient are discussed. An exemplary system receives physiologic information from a patient using an ambulatory medical device. The physiologic information is correlated to, and different from, a direct glucose level measurement. The system determines a glucose index indicative of an abnormal blood glucose level using the received physiologic information by the two or more physiologic sensors. The system may use the glucose index to initiate or adjust a therapy, or to trigger a glucose sensor, separate from the two or more physiologic sensors, to directly measure blood glucose concentration.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: April 2, 2024
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Bin Mi, Pramodsingh Hirasingh Thakur, Keith R. Maile, Stephen B. Ruble, Jonathan Bennett Shute
  • Patent number: 11944831
    Abstract: A leadless pacing device may include a housing having a proximal end and a distal end, and a set of one or more electrodes supported by the housing. The housing may include a first portion and a second portion, with a guide wire port extending through the second portion. A guide wire lumen may extend through the second portion of the housing and the guide wire port may be located at a proximal end of the guide wire lumen. An exposed electrode may be located on a side of the housing that is opposite a side on which the guide wire port is located. The leadless pacing device may include a fixing member on the housing and extending radially from the housing. The leadless pacing device may further include a proximal member extending proximally from a proximal end of the housing. The proximal member may be elongated.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: April 2, 2024
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Benjamin J. Haasl, Dana Sachs, Allan Charles Shuros
  • Patent number: 11931580
    Abstract: An example of a method embodiment may include receiving a user programmable neural stimulation (NS) dose for an intermittent neural stimulation (INS) therapy, and delivering the INS therapy with the user programmable NS dose to an autonomic neural target of a patient. Delivering the INS therapy may include delivering NS bursts, and delivering the NS bursts may include delivering a number of NS pulses per cardiac cycle during a portion of the cardiac cycles and not delivering NS pulses during a remaining portion of the cardiac cycles. The method may further include sensing cardiac events within the cardiac cycles, and controlling delivery of the user programmable NS dose of INS therapy using the sensed cardiac events to time delivery of the number of NS pulses per cardiac cycle to provide the user programmable NS dose. The user programmable NS dose may determine the number of NS pulses per cardiac cycle.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: March 19, 2024
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David J. Ternes, Jason J. Hamann, Stephen B. Ruble, Juan Gabriel Hincapie Ordonez, Manfred Franke
  • Patent number: 11931592
    Abstract: Improved devices, circuits and methods of operation in implantable stimulus systems. An implantable defibrillator may comprise an H-bridge output circuit having low and high sides, with a current controlling circuit coupled to the high side of the H-bridge output circuit and a current monitoring circuit coupled to the low side of the H-bridge output circuit. Alternate current paths to the output of the H-bridge, or to the H-Bridge itself, are used for delivering different therapies to the patient.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: March 19, 2024
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Brandon Tyler Keil, William J. Linder, Keith R. Maile
  • Patent number: 11925485
    Abstract: An example of a system for monitoring and treating respiratory distress in a patient may include one or more non-invasive monitoring devices to acquire patient condition signals and a respiratory distress monitoring circuit to monitor a state of the respiratory distress using the patient condition signals. The respiratory distress monitoring circuit may include a signal processing circuit to generate patient condition parameters using the patient condition signals and a respiratory distress analyzer, which may include a parameter analysis circuit and a notification circuit. The parameter analysis circuit may be configured to produce a patient condition metric being a function of the patient condition parameters and to perform prediction and/or detection of an exacerbation of the respiratory distress based on the patient condition metric. The notification circuit may be configured to produce an alert notifying a result of the performance of the prediction and/or detection.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: March 12, 2024
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Elizabeth Mary Annoni, Bryan Allen Clark, Jeffrey E. Stahmann, Viktoria A. Averina
  • Patent number: 11918821
    Abstract: Various aspects of the present disclosure are directed toward apparatuses, systems, and methods that may include a connector port subassembly. The connector port subassembly may include one or more connector blocks configured to interference fit within a connector bore, one or more windows through the core subassembly to the one or more connector blocks, and one or more seal rings configured to interference fit within the connector bore and eliminate adulterant entry into the connector bore through the one or more windows.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: March 5, 2024
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Scott A. Spadgenske, James Michael English, Trey Henry Achterhoff, Robert Allen Jones
  • Patent number: 11918814
    Abstract: Systems and methods for pacing cardiac conductive tissue are described. An embodiment of a medical system includes an electrostimulation circuit to generate His-bundle pacing (HBP) pulses to stimulate a His bundle, and a cardiac event detector to detect a His-bundle activity within a time window following an atrial activity. The cardiac event detector may use a cross-chamber blanking, or an adjustable His-bundle sensing threshold, to avoid or reduce over-sensing of far-field atrial activity and inappropriate inhibition of HBP therapy. The electrostimulation circuit may deliver HBP in the presence of the His-bundle activity. The system may further recognize the detected His-bundle activity as either a FFPW or a valid inhibitory event, and deliver or withhold HBP therapy based on the recognition of the His-bundle activity.
    Type: Grant
    Filed: September 8, 2022
    Date of Patent: March 5, 2024
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David Arthur Casavant, David L. Perschbacher, Deepa Mahajan
  • Patent number: 11890476
    Abstract: Various aspects of the present subject matter relate to an implantable device. Various device embodiments comprise at least one port to connect to at least one lead with at least electrode, stimulation circuitry connected to the at least one port and adapted to provide at least one neural stimulation therapy to at least one neural stimulation target using the at least one electrode, sensing circuitry connected to the at least one port and adapted to provide a sensed signal, and a controller connected to the stimulation circuitry to provide the at least one neural stimulation therapy and to the sensing circuitry to receive the sensed signal. In response to a triggering event, the controller is adapted to switch between at least two modes. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: June 8, 2022
    Date of Patent: February 6, 2024
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Andrew P. Kramer, William J. Linder, Jeffrey E. Stahmann
  • Patent number: 11890116
    Abstract: Systems and methods for detecting worsening cardiac conditions such as worsening heart failure events are described. A system may include sensor circuits to sense physiological signals and signal processors to generate from the physiological signals first and second signal metrics. The system may include a risk stratifier circuit to produce a cardiac risk indication. The system may use at least the first signal metric to generate a primary detection indication, and use at least the second signal metric and the risk indication to generate a secondary detection indication. The risk indication may be used to modulate the second signal metric. A detector circuit may detect the worsening cardiac event using the primary and secondary detection indications.
    Type: Grant
    Filed: November 28, 2022
    Date of Patent: February 6, 2024
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Yi Zhang, Qi An, Viktoria A. Averina
  • Patent number: 11890101
    Abstract: Systems and methods for calibrating an orientation of an implantable device in a patient is described. An exemplary system includes a calibration circuit that can receive acceleration information sensed from an implantable medical device (IMD) implanted in a patient, and receive reference acceleration information sensed from a reference device associated with the patient. The acceleration information and the reference acceleration information are acquired when the patient assumes a first posture or in a first position. The calibration circuit determines a spatial relationship between an orientation of the IMD and a reference orientation of the reference device using the received acceleration information and the received reference acceleration information, and calibrate subsequent acceleration information sensed from the IMD using the determined spatial relationship to correct for the orientation of the IMD.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: February 6, 2024
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jonathan Bennett Shute, John D. Hatlestad, Sunipa Saha, David L Perschbacher
  • Patent number: 11883191
    Abstract: Systems and methods to detect pneumonia in cardiovascular patients are disclosed, including receiving physiologic information of a patient from an ambulatory medical device (AMD), the physiologic information comprising respiration information of the patient, and determining a pneumonia score of the patient using the received respiration information.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: January 30, 2024
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Rezwan Ahmed, Qi An, Viktoria A. Averina, Pramodsingh Hirasingh Thakur
  • Patent number: 11883209
    Abstract: Systems and methods for detecting worsening cardiac conditions such as worsening heart failure events are described. A system may include sensor circuits to sense physiological signals and signal processors to generate from the physiological signals first and second signal metrics. The system may include a risk stratifier circuit to produce a cardiac risk indication. The system may use at least the first signal metric to generate a primary detection indication, and use at least the second signal metric and the risk indication to generate a secondary detection indication. The risk indication may be used to modulate the second signal metric. A detector circuit may detect the worsening cardiac event using the primary and secondary detection indications.
    Type: Grant
    Filed: November 28, 2022
    Date of Patent: January 30, 2024
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Yi Zhang, Qi An, Viktoria A. Averina
  • Patent number: 11864928
    Abstract: Systems and methods for monitoring patients with respiratory diseases are described. A system may include a sensor circuit configured to sense one or more physiological signals indicative of respiratory sounds, and a spectral analyzer to generate first and second spectral contents at respective first and second frequency bands. The system may produce a respiratory anomaly indicator using the first and second spectral contents, or additionally with other physiological parameters. The system may detect an onset or progression of a target respiratory condition such as asthma or chronic obstructive pulmonary disease using the respiratory anomaly indicator, or to trigger or adjust a therapy.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: January 9, 2024
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Keith R. Maile, Pramodsingh Hirasingh Thakur, Michael J. Kane, Bin Mi, Ron A. Balczewski, Jeffrey E. Stahmann
  • Patent number: 11862804
    Abstract: A battery includes a battery case including a housing having side walls defining a first open end and a second open end, the battery case including a separate top cover to cover the first open end of the housing and a separate bottom cover to cover the second open end of the housing; a first electrode located within the case; a second electrode located within the case; a first terminal coupled to the first electrode and exposed outside the case; and a second terminal coupled to the second electrode and exposed outside the case.
    Type: Grant
    Filed: August 16, 2022
    Date of Patent: January 2, 2024
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Kurt E. Koshiol, Benjamin J. Haasl, Joseph Charles Delmedico, Aaron Peter Brooks, Steven Lawrence Frandrup, Andrew Dauwalter, Keith R. Maile, Ignacio Chi
  • Patent number: 11857795
    Abstract: The present invention involves approaches for selecting one or more electrode combinations.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: January 2, 2024
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: M. Jason Brooke, Andrea E. Acuna
  • Patent number: 11855292
    Abstract: Embodiments herein relate to simplified and space efficient designs for multiplate batteries. In an embodiment, an electrochemical cell is included having an multiplate anode and multiplate cathode with a separator to provide physical separation between anode and cathode plates. Anode collectors can be in electrical communication with each anode plate and anode tabs in electrical communication with each anode collector. Cathode collectors can be in electrical communication with each cathode plate and cathode tabs in electrical communication with each cathode collector. An anode busbar can interconnect the plurality of anode tabs in parallel and a cathode busbar can interconnect the plurality of cathode tabs in parallel. The cathode busbar can be oriented such that the cathode tabs are not disposed between the cathode busbar and the plurality of cathode plates. Other embodiments are also included herein.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: December 26, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Kurt E. Koshiol, Ignacio Chi, Joseph Charles Delmedico
  • Patent number: 11850430
    Abstract: Systems and methods for monitoring and treating patients with heart failure are discussed. The system can store in a memory stimulation parameters, including stimulation timing parameters for a plurality of heart rate ranges. The system includes a plurality of timers with respective durations for the plurality of heart rate ranges. A stimulation control circuit can identify a target heart range in which a detected heart rate falls, and measure an atrioventricular (AV) conduction characteristic value in response to the timer for the target heart range being expired at the detected heart rate. The stimulation control circuit can update a stimulation parameter corresponding to the target heart rate range using the measured AV conduction characteristic. The updated stimulation parameter can be used in cardiac stimulation.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: December 26, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Qi An, Yinghong Yu, Adam MacEwen
  • Patent number: 11851522
    Abstract: A polymeric material includes a polyisobutylene-polyurethane block copolymer. The polyisobutylene-polyurethane block copolymer includes soft segments, hard segments, and end groups. The soft segments include a polyisobutylene diol residue. The hard segments include a diisocyanate residue. The end groups are bonded by urea bonds to a portion of the diisocyanate residue. The end groups include a residue of a mono-functional amine.
    Type: Grant
    Filed: September 23, 2022
    Date of Patent: December 26, 2023
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Joseph T. Delaney, Jr., Andrew J. Ro, David R. Wulfman, Niraj Gurung, Patrick Willoughby