Patents Assigned to Cardiac Pacemakers, Inc.
  • Patent number: 11540728
    Abstract: Embodiments of the present disclosure relate to heart sound measurements using mobile devices. In an embodiment, a medical system for monitoring heart sounds of a subject comprises a medical device configured to obtain, during a first sampling interval, a first physiological signal. The medical system further comprises a mobile device comprising an accelerator, wherein the accelerator is configured to obtain, during a second sampling interval, a second physiological signal. And, the medical system comprises an analysis component configured to extract heart sounds data from the second physiological signal.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: January 3, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jonathan B. Shute, Kyle H. Srivastava, Pramodsingh H. Thakur, Keith R. Maile
  • Patent number: 11537702
    Abstract: Embodiments herein relate to sensor based authentication between an implantable medical device (IMD) and an external device. In an embodiment, the IMD includes a wireless communication module and an internal inertial measurement unit (IMU) capable of measuring vibrations, movement, or rotation. The IMD is configured to record an internal IMU signal from the internal IMU. The external device includes a wireless communication module and an external IMU. The external device is configured to record an external IMU signal from the external IMU. The system further includes a data processing system to receive a first level communication that can include the internal IMU signal, the external IMU signal, or both, compare data from the internal IMU signal with data from the external IMU signal, and authorize a second level communication based on results of the comparison step.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: December 27, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jonathan Bennett Shute, Bin Mi, Andrew Bomett, Michael Sheehan Seeberger, Grace Ann Wiechman, Kenneth P. Hoyme
  • Patent number: 11534602
    Abstract: Implantable devices and systems include one or more leads adapted to be emplaced in the internal thoracic vein (ITV) of a patient. The lead may include features to adapt the lead for such placement. An associated device for use with the lead may include operational circuitry adapted for use with a lead having an electrode for sensing and/or therapy purposes coupled thereto. Methods for implantation and use of such devices and systems are disclosed as well.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: December 27, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: G. Shantanu Reddy, James O. Gilkerson, Andrew L. De Kock, James K. Cawthra, Jr., Eric Hammill
  • Patent number: 11534107
    Abstract: Systems and methods for treating a medical condition such as worsening heart failure (WHF) are described. A medical system may sense one or more physiological signals, and generate from the sensed physiological signals a signal metric trend indicating a progression of heart failure. A detector may detect a physiological event leading to WHF. A therapy control circuit may generate a therapy titration protocol using the generated signal metric trend. The therapy titration protocol includes a temporal profile of therapy dosage relative to a target dosage. The therapy control circuit may adjust the target dosage based on patient response. Therapies may be administered by a clinician or automatically delivered to the patient according to the therapy titration protocol.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: December 27, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Viktoria A. Averina, Yi Zhang, Qi An
  • Patent number: 11534113
    Abstract: Systems and methods for monitoring patients with a chronic disease are described. A patient management system may sense physiological signals from a patient using one or more implantable or other ambulatory sensors, and generate from the physiological signals a chronobiological rhythm indicator (CRI) such as indicating a circadian rhythm. A reference CRI associated with a prior hospital admission event of the patient may be provided to the patient management system, which compares the CRI to the reference CRI and generates a readmission risk score indicating the patient's risk of subsequent hospital readmission due to a worsened condition of the chronic disease. The readmission risk score may be provided to a user or a process, or used to initiate or adjust a therapy delivered to the patient.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: December 27, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Qi An, Viktoria A. Averina, Julie A. Thompson, Pramodsingh Hirasingh Thakur
  • Patent number: 11529525
    Abstract: Various aspects of the present disclosure are directed toward apparatuses, systems and methods for connecting a lead to an implantable medical device. The apparatuses, systems and methods may include a clamp arranged within a connector port configured to secure the lead with a header in response to frictional engagement between a portion of the implantable lead and the clamp.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: December 20, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: James M. English, Moira B. Sweeney, John O'Rourke, Robert A. Jones, Trey H. Achterhoff, Scott A. Spadgenske
  • Patent number: 11529088
    Abstract: Methods and systems for use of the Q-wave to R-wave interval to guide placement of a leadless cardiac pacemaker are disclosed. An implant delivery device is equipped with sensing electrodes to sense R-wave onset in a ventricle of a patient's heart to allow placement at a location of last or latest onset of the R-wave. Guidance tools are provided to assist in determination of the Q-wave to R-wave interval during implantation. For a chronic system, a cooperative approach is disclosed in which an implantable medical device and a leadless cardiac pacemaker exchange data to determine Q-wave to R-wave intervals and enhance cardiac resynchronization therapy delivery by the leadless cardiac pacemaker.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: December 20, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Steven Lee Eddy, Brendan Early Koop, Yinghong Yu
  • Patent number: 11529212
    Abstract: A medical device including a hybrid circuitry assembly, a core assembly housing having an inside surface, and a tag/getter assembly. The core assembly housing to enclose the hybrid circuitry assembly, and the tag/getter assembly to be situated adjacent the inside surface of the core assembly housing. The tag/getter assembly including an identification tag and a hydrogen getter.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: December 20, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Joseph Prescott, Jean M. Bobgan, David P. Stieper
  • Patent number: 11529523
    Abstract: A bridge device includes a housing, a plurality of electrodes exposed outside of the housing such that at least two of the plurality of electrodes can be concurrently placed in contact with a patient's skin. A controller is disposed within the housing. A first communications module is operably coupled to the controller and to the at least two of the plurality of electrodes. The first communications module is configured to allow the controller to communicate with an implantable medical device via at least two of the plurality of electrodes using conducted communication. A second communications module is operably coupled to the controller and is configured to allow the controller to communicate with a remote device external to the patient.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: December 20, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Ron A. Balczewski, William J. Linder, Keith R. Maile
  • Patent number: 11523778
    Abstract: Systems and methods for detecting worsening cardiac conditions such as worsening heart failure events are described. A system may include sensor circuits to sense physiological signals and signal processors to generate from the physiological signals first and second signal metrics. The system may include a risk stratifier circuit to produce a cardiac risk indication. The system may use at least the first signal metric to generate a primary detection indication, and use at least the second signal metric and the risk indication to generate a secondary detection indication. The risk indication may be used to modulate the second signal metric. A detector circuit may detect the worsening cardiac event using the primary and secondary detection indications.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: December 13, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Yi Zhang, Qi An, Viktoria A. Averina
  • Patent number: 11523746
    Abstract: Various aspects of the present disclosure are directed toward apparatuses, systems, and methods for supporting components of an implantable medical device. The apparatuses, systems, and methods may include a first electrode and a second electrode and a scaffold assembly configured to support the first electrode and the second electrode.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: December 13, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Ron A. Balczewski, Jean M. Bobgan, Aleksandra Kharam, David P. Stieper, Scott R. Vanderlinde
  • Patent number: 11523743
    Abstract: Systems and methods for monitoring physiologic response to Valsalva maneuver (VM) are disclosed. An exemplary patient monitor may detect a natural incidence of a VM session occurred in an ambulatory setting using a heart sound (HS) signal sensed from the patient. The patient monitor may include a physiologic response analyzer to sense patient physiologic response during the detected VM session, and generate a cardiovascular or autonomic function indicator based on the sensed physiologic response to the VM. Using the physiologic response to the VM, the system may detect a target physiologic event using the sensed physiologic response to the VM.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: December 13, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, David J. Ternes, Ashley Moriah Jensen, Qi An, Amy Jean Brisben
  • Publication number: 20220387805
    Abstract: A leadless pacing device may include a housing having a proximal end and a distal end, and one or more electrodes supported by the housing. The housing may include a body portion and a header. A distal extension may extend distally from the header of the housing, the distal extension including one or more electrodes. The header may include a guide wire port and a guide wire lumen may extend from the guide wire port through the header of the housing and through the distal extension. A fixation member may extend from the header of the housing. The header may be formed from an over mold process.
    Type: Application
    Filed: August 16, 2022
    Publication date: December 8, 2022
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: LILI LIU, BENJAMIN J. HAASL, BRENDAN EARLY KOOP, ARTHUR J. FOSTER, JUSTIN ROBERT ALT, DANA SACHS
  • Patent number: 11517747
    Abstract: An electrode assembly for the positioning of an electrode of an implantable medical lead includes a housing and an electrode subassembly. The housing includes a proximal end for connecting to the lead and a distal end. The housing defines a housing lumen extending between the proximal end and the distal end. The housing lumen includes internal screw threads extending along at least a portion of the housing lumen. The electrode subassembly is disposed at least partially within the housing lumen. The electrode subassembly includes a needle electrode and a coupler. The needle electrode is disposed coaxially with the longitudinal axis of the housing lumen. The coupler is disposed at a proximal end of the needle electrode. The coupler includes external screw threads engaged with the internal screw threads of the housing lumen such that rotation of the coupler moves the needle electrode along the longitudinal axis of the housing lumen.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: December 6, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Arthur J. Foster, Matthew J. Miller
  • Patent number: 11510697
    Abstract: An implantation and/or retrieval device for a leadless cardiac pacing device may include a first elongate shaft including a lumen; a second elongate shaft slidably disposed within the lumen of the first elongate shaft; an end cap assembly fixedly attached to a distal end of the first elongate shaft; and a plurality of wires attached to the second elongate shaft and extending distally from the end cap assembly, the plurality of wires being movable relative to the end cap assembly. The plurality of wires is configured to engage a proximal hub of the leadless cardiac pacing device. The plurality of wires forms a plurality of wire loops extending distally from the end cap assembly.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: November 29, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Arthur J. Foster, Dana Sachs, Brendan Early Koop, Justin Robert Alt, David Robert Wulfman, Benjamin J. Haasl
  • Patent number: 11504537
    Abstract: Systems and methods for monitoring chronic over-pacing (COP) to the heart are discussed herein. In an embodiment, a system includes a receiver circuit to receive information about pacing rates of a plurality of paced heart beats, and a pacing analyzer circuit to generate a pacing rate distribution using pacing rates of the plurality of the paced heart beats. The pacing rate distribution includes a pacing rate histogram. The pacing analyzer circuit may recognize a morphological pattern from the pacing rate distribution, and detect a COP indication using the extracted feature. A programmer circuit adjusts one or more therapy parameters in response to the detected. COP indication.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: November 22, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David L. Perschbacher, James O. Gilkerson, Sunipa Saha, Deepa Mahajan
  • Patent number: 11504538
    Abstract: A system includes a pulse generator including a can electrode and a lead couplable to the pulse generator, the lead including a distal coil electrode and a proximal coil electrode, wherein both of the coil electrodes are electrically uncoupled from the can electrode such that a unipolar sensing vector is provided between at least one of the coil electrodes and the can electrode.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: November 22, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David L. Perschbacher, James O. Gilkerson, Ron A. Balczewski
  • Patent number: 11497918
    Abstract: Systems and methods for monitoring and treating patients with heart failure (HF) are discussed. The system may sense cardiac signals, and receives information about patient physiological or functional conditions. A stimulation parameter table that includes recommended values of atrioventricular delay (AVD) or other timing parameters maybe created at a multitude of patient physiological or functional conditions. The system may periodically reassess patient physiological or functional conditions. A therapy programmer circuit may dynamically switch between left ventricular-only pacing and biventricular pacing, or switch between single site pacing and multisite pacing based on the patient condition. The therapy programmer circuit may adjust AVD and other timing parameters using the cardiac signal input and the stored stimulation parameter table. A HF therapy may be delivered according to the determined stimulation site, stimulation mode, and the stimulation timing.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: November 15, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David J. Ternes, Yinghong Yu, Jason Humphrey, David L. Perschbacher, Michael James Dufresne, Adam MacEwen, Keith L. Herrmann
  • Patent number: 11497921
    Abstract: Systems, methods and implantable devices configured to provide cardiac resynchronization therapy and/or bradycardia pacing therapy. A first device located in the heart of the patient is configured to receive a communication from a second device and deliver a pacing therapy in response to or in accordance with the received communication. A second device located elsewhere is configured to determine an atrial event has occurred and communicate to the first device to trigger the pacing therapy. The second device may be configured for sensing the atrial event by the use of vector selection and atrial event windowing, among other enhancements. Exception cases are discussed and handled as well.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: November 15, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Stephen J. Hahn, Krzysztof Z. Siejko, William J. Linder, Keith R. Maile, Amy Jean Brisben, Keith L. Herrmann, Brendan E. Koop, Benjamin J. Haasl
  • Patent number: 11491338
    Abstract: A method of making a feed-thru connector assembly includes inserting a conductor within an opening within a housing of a pulse generator and dispensing a sealant in a gap between the conductor and portions of the housing adjacent to the conductor that define the opening of the housing and curing the sealant to form a seal comprising a polyisobutylene cross-linked network.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: November 8, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. Kane, Joseph T. Delaney, Jr., Kasyap Seethamraju