Patents Assigned to Cardica, Inc.
  • Patent number: 7344544
    Abstract: A system for closing an opening in tissue may include an end effector that holds a staple, where the staple is plastically deformed to a splayed configuration for engaging tissue, then plastically deformed to a closed condition for closing the opening. The system may include one or more butterfly members configured to register the opening to the end effector.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: March 18, 2008
    Assignee: Cardica, Inc.
    Inventors: Theodore M. Bender, Zachary Warder-Gabaldon, Matthew B. Newell, Bernard A. Hausen, Brian R. DuBois, Bryan D. Knodel
  • Patent number: 7335216
    Abstract: An piercing member is axially fixed to and positioned within a cutter, both of which are components of a stand-alone tool for creating an opening in the wall of a tubular tissue structure. The stand-alone tool includes an impulse source connected to the piercing member and to the cutter. An actuator is operationally connected to the impulse source, where the actuator causes the impulse source to release energy to and provide an impulse to the piercing member and the cutter. The tool may be configured to make multiple openings in the tissue of the same patient. Where the tool is configured to make multiple openings in the tissue of the same patient, the tool allows the piercing member and cutter to be moved back to an initial pre-deployment position after each use.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: February 26, 2008
    Assignee: Cardica, Inc.
    Inventors: Theodore M. Bender, Brian R. DuBois, Dan M. Pomeroy, Scott O. Chamness, Brendan M. Donohoe
  • Publication number: 20080027472
    Abstract: A system for connecting the end of a graft vessel to the side of a target vessel may include an anvil configured to enter the target vessel through an anvil entry hole in the wall of the target vessel; a holder movable relative to the anvil, where that holder may deploy at least one connector through the graft vessel and into the target vessel at a location spaced apart from the anvil entry hole; and at least one sealer that may be detachably connected to the anvil and/or said holder; where at least one sealer may be configured to substantially close the anvil entry hole in the target vessel.
    Type: Application
    Filed: October 2, 2007
    Publication date: January 31, 2008
    Applicant: CARDICA, INC.
    Inventors: James Nielsen, Nathan White, Theodore Bender, Philipe Manoux, David Bombard, Brendan Donohoe, Bryan Knodel
  • Publication number: 20080017691
    Abstract: A method for closing an aneurysm in a blood vessel may utilize a staple having two or more tines, where those tines are oriented at least partially in the proximal direction. The method may include advancing the staple through the vasculature to a location within the aneurysm, plastically deforming the staple to a splayed configuration, penetrating at least one said tine of the staple in that splayed configuration into tissue in proximity to the neck of the aneurysm, and plastically deforming the staple to a closed configuration to close the aneurysm.
    Type: Application
    Filed: July 20, 2007
    Publication date: January 24, 2008
    Applicant: CARDICA, INC.
    Inventor: Bernard Hausen
  • Patent number: 7320692
    Abstract: A method for closing an opening in tissue, such as an opening in heart tissue, may include moving a housing to a location in proximity to the opening, registering the housing to the opening, and deploying a staple from the housing into tissue in proximity to the opening. The opening in heart tissue may be a patent foramen ovale, atrial septal defect, or other opening. The housing may be moved to the opening through the vasculature, utilizing a guidewire, steering catheter, or other mechanism.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: January 22, 2008
    Assignee: Cardica, Inc.
    Inventors: Theodore M. Bender, Zachary Warder-Gabaldon, Matthew B. Newell, Bernard A. Hausen, Brian R. DuBois, Bryan D. Knodel
  • Publication number: 20080015638
    Abstract: A method for performing anastomosis between a graft vessel and a coronary artery of the heart of a patient may include providing a stabilizer, a suspension attached to the stabilizer, and an anastomosis tool that includes an anvil and a staple holder movable relative to one another, where that anastomosis tool is attached to the suspension. Pressure may be applied to the heart with the stabilizer, after which the anastomosis tool may move relative to the stabilizer and connect the graft vessel to the coronary artery.
    Type: Application
    Filed: July 11, 2007
    Publication date: January 17, 2008
    Applicant: CARDICA, INC.
    Inventor: Stephen Yencho
  • Patent number: 7309343
    Abstract: A tissue punch for creating a hole in the wall of a target blood vessel for receiving an anastomosis device includes a piercing element for penetrating the tissue and a cutting element for cutting a plug of tissue around the pierced hole. The tissue punch includes a trocar for inserting the piercing element. After punching is complete, the piercing element is removed from the trocar through a side wall of the trocar so that a medical device can be deployed through the trocar lumen. The tissue punch may also include a tissue trap for trapping the plug of tissue.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: December 18, 2007
    Assignee: Cardica, Inc.
    Inventors: Jaime Vargas, Brendan M. Donohoe, Scott C. Anderson, Theodore Bender, Stephen Yencho, Bernard Hausen, Michael Hendricksen, James T. Nielsen
  • Patent number: 7303570
    Abstract: An anastomosis tool may include a connector holder connected to an anvil. The connector holder may be bifurcated and configured to straddle the graft vessel. The connector holder may be generally U-shaped. The connector holder may be shaped to extend around more than half of the circumference of the graft vessel.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: December 4, 2007
    Assignee: Cardica, Inc.
    Inventors: David L. Bombard, Jaime S. Vargas, James T. Nielsen, Philipe R. Manoux, Tenny Chang, Stephen A. Yencho, Bernard A. Hausen, Brendan M. Donohoe, Theodore M. Bender, Nathan H. White, Bryan D. Knodel
  • Patent number: 7303569
    Abstract: A one piece anastomosis device is disclosed which is formed of a superelastic or pseudoelastic material which self deforms or self deploys from an insertion configuration to a tissue holding configuration. The device in a deployed state preferably includes an inner tissue penetrating flange which penetrate and retains an everted graft vessel and an outer flange. The self deploying anastomosis device does not rely on a temperature transformation to achieve deployment.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: December 4, 2007
    Assignee: Cardica, Inc.
    Inventors: Stephen Yencho, Jaime Vargas
  • Patent number: 7300444
    Abstract: A system for performing anastomosis between a graft vessel and a target vessel includes a tissue effector that may be configured to deploy a user-selectable number of connectors. The system includes an anvil that enters the wall of the target vessel through an entry hole that is spaced apart from the anastomosis site, and at least one anvil entry hole sealer may be utilized to substantially seal the anvil entry hole upon withdrawal of the anvil. The system may include a shield and a cutter, both of which are movable relative to the anvil, where the shield is configured to protect the graft vessel from the cutter. The cutter may include an incising element movable from a stowed position to an active position.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: November 27, 2007
    Assignee: Cardica, Inc.
    Inventors: James T. Nielsen, Nathan H. White, Theodore M. Bender, Philipe R. Manoux, David L. Bombard, Brendan M. Donohoe, Bryan D. Knodel
  • Patent number: 7291157
    Abstract: A surgical tool for performing anastomosis may include a staple holder; a clip detachably connected to the staple holder; a length of suture, wherein a portion of the length of suture is held securely between the clip and the staple holder; and a needle connected to the suture. An incision may be made at one end of the graft vessel to form a flap. The needle may penetrate the wall of the graft vessel proximal to the incision, and the graft vessel may then be parachuted down the suture toward engagement with the clip. In this way, graft loading onto the clip is facilitated.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: November 6, 2007
    Assignee: Cardica, Inc.
    Inventors: Bernard A. Hausen, Luke W. Clauson, David L. Bombard
  • Patent number: 7285131
    Abstract: An anastomosis system for connecting a graft vessel to a target vessel includes an elongated anvil arm for insertion into the target vessel. The anvil arm includes a contact surface that contacts the inner surface of the wall of the target vessel. The anvil arm includes a channel through which a cutting element translates, and a opening that extends between the channel and the contact surface of the anvil arm. The cutting element is translated along the channel, and is controlled to extend through the opening and make an incision in the wall of the target vessel at a selected location. The incision is made at a location spaced apart from the penetration site at which the anvil arm is inserted into the target vessel, resulting in a tissue bridge between the incision and the penetration site.
    Type: Grant
    Filed: May 20, 2002
    Date of Patent: October 23, 2007
    Assignee: Cardica, Inc.
    Inventors: David L. Bombard, Bryan D. Knodel, Jaime S. Vargas, Michael J. Hendricksen, Stephen A. Yencho, James T. Nielsen, Bernard A. Hausen, Brendan M. Donohoe, Theodore M. Bender
  • Publication number: 20070233163
    Abstract: A surgical tool for performing anastomosis between a graft vessel and a target vessel may include an anvil; a cutting element connected to the anvil; and an energy source connected to the cutting element, wherein the energy source is configured to deliver energy to the cutting element. A method for performing anastomosis with that tool may include placing an end of the graft vessel against a side of the target vessel; creating an opening in the wall of the target vessel at a first location; inserting an anvil through the opening from outside the wall of the target vessel into the lumen of the target vessel; creating an incision in the wall of the target vessel spaced apart from the first location; and connecting the graft vessel to the target vessel.
    Type: Application
    Filed: May 31, 2007
    Publication date: October 4, 2007
    Applicant: CARDICA, INC.
    Inventors: David Bombard, Bryan Knodel, Jaime Vargas, Michael Hendricksen, Stephen Yencho, James Nielsen, Bernard Hausen, Brendan Donohoe, Theodore Bender
  • Publication number: 20070233164
    Abstract: A surgical staple for connecting two tubular tissue structures may include a substantially rectangular base having a first edge and a second edge substantially parallel to one another, and a third edge substantially perpendicular to the first and said second edges; and may also include at least three deformable tines extending from the first and second edges of said base; where no tine that extends from the first edge may be positioned at substantially the same distance from the third edge as any said tine that extends from the second edge; and where deformation of the tines secures the tubular tissue structures together.
    Type: Application
    Filed: June 7, 2007
    Publication date: October 4, 2007
    Applicant: CARDICA, INC.
    Inventors: Theodore Bender, David Bombard, Philipe Manoux, Tenny Chang, Jaime Vargas, Bryan Knodel
  • Patent number: 7270670
    Abstract: A minimally-invasive anastomosis system includes a suspension that connects an anastomosis tool to a stabilizer. The stabilizer may be rigidly connected to a retractor or other structure that is fixed relative to the patient. The suspension facilitates anastomosis of a graft vessel to a target vessel in that tissue, by allowing the anastomosis tool to move relative to the stabilizer so that it can move along with the remaining motion of the heart tissue.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: September 18, 2007
    Assignee: Cardica, Inc.
    Inventor: Stephen A. Yencho
  • Patent number: 7267682
    Abstract: An anastomosis staple has a base from which multiple deformable tines extend. At least one tine may be offset from at least one other tine. The tines are moveable from a first configuration to a second configuration. The staple optionally includes at least one alignment guide.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: September 11, 2007
    Assignee: Cardica, Inc.
    Inventors: Theodore M. Bender, David L. Bombard, Philipe R. Manoux, Tenny Chang, Jaime S. Vargas, Bryan D. Knodel
  • Patent number: 7223274
    Abstract: A method for performing anastomosis between a graft vessel and a target vessel with an integrated anastomosis tool may include actuating at least one control on the integrated anastomosis tool to create an opening in the target vessel and complete an anastomosis with the target vessel. Another method for performing anastomosis may include creating an opening in intact tissue of the target vessel with an integrated anastomosis tool; and deploying an anastomosis device with the integrated anastomosis tool. The anastomosis may be performed with an anastomosis device, such as an anastomosis device having a deployable section detachable from a discard section.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: May 29, 2007
    Assignee: Cardica, Inc.
    Inventors: Jaime S. Vargas, Stephen A. Yencho, James T. Nielsen, Brendan M. Donohoe, Theodore M. Bender, Brian R. DuBois, Scott O. Chamness, Nathan H. White, Gregory B. Arcenio, Heather L. Klaubert, Russell C. Mead, Jr.
  • Patent number: 7217285
    Abstract: An apparatus for performing anastomosis between a graft vessel and a target vessel may include a connector holder having spaced-apart arms, and a member connected to the connector holder, where the member is insertable through an opening in a wall of the target vessel at least partially into the lumen of the target vessel. One or more connectors, such as staples, may be deployed from each arm to connect the graft vessel to the target vessel. One or more connectors may be deformable against the member.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: May 15, 2007
    Assignee: Cardica, Inc.
    Inventors: Jaime Vargas, Michael Hendricksen, Stephen A. Yencho, Jamey Nielsen, Bernard A. Hausen, Brendan Donohoe
  • Publication number: 20070106312
    Abstract: A method for connecting a graft vessel to a target vessel may utilize an integrated tool that includes a movable cam having a number of discrete slots defined therein. The method may include moving the cam, creating an opening in the wall of the target vessel with the integrated tool; and advancing an anastomosis device at least partially into the opening with the integrated tool, where moving the cam causes both the creating of the opening and the advancing of the anastomosis device.
    Type: Application
    Filed: December 22, 2006
    Publication date: May 10, 2007
    Applicant: CARDICA, INC.
    Inventors: Jaime Vargas, Stephen Yencho, Jamey Nielsen, Michael Hendricksen, Bernard Hausen
  • Patent number: 7175637
    Abstract: An anastomosis device is a one piece device for connecting a graft vessel to a target vessel without the use of conventional sutures. The anastomosis device includes an expandable tube configured to have a graft vessel secured to the tube. The device has an expandable linkage positioned at one end of the device and expansion of this linkage causes a first radially extending flange to fold outward. This first flange abuts an interior wall of a target vessel and a second flange is formed which abuts an exterior wall of the target vessel trapping the target vessel between the two flanges and secures the end of the graft vessel into an opening in the wall of the target vessel. The device greatly increases the speed with which anastomosis can be performed over known suturing methods and allows anastomosis to be performed in tight spaces.
    Type: Grant
    Filed: September 4, 2001
    Date of Patent: February 13, 2007
    Assignee: Cardica, Inc.
    Inventors: Jaime Vargas, Stephen A. Yencho, Jamey Nielsen, Michael Hendricksen, Bernard A. Hausen