Patents Assigned to Cardiovascular Systems, Inc.
  • Patent number: 10660773
    Abstract: A medical device includes a balloon expanded scaffold crimped to a catheter having a balloon. The scaffold has a network of rings formed by struts connected at crowns and links connecting adjacent rings. The scaffold is crimped to the balloon by a process that includes using protective polymer sheaths or sheets during crimping, and adjusting the sheaths or sheets during the crimping to avoid or minimize interference between the polymer material and scaffold struts as the scaffold is reduced in size.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: May 26, 2020
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Karen J. Wang, Edward P. Garcia, Boyd V. Knott, Jill A. McCoy, Ashleigh Z. Sheehy
  • Patent number: 10646343
    Abstract: A method for improving the function of a valve in the heart of a patient, comprising attaching, to a leaflet of the valve, an element that is responsive to a magnetic field; positioning, outside of the heart of the patient, a coil connected to a source of electric energy; activating the source of electric energy to provide an oscillating current in the coil; and thereby providing an oscillating magnetic field through the coil to effect movement of the element and the leaflet.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: May 12, 2020
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Santosh Prabhu, Jacob L. Greenberg, Koji J. Kizuka, Travis Marsot
  • Patent number: 10639181
    Abstract: A system for delivering an implant including a handle, a trigger, an actuation assembly, and a catheter assembly. The actuation assembly is configured to displace the outer tubular member in the proximal direction and to separately move the inner shaft member distally upon deployment of the trigger from the first position to the second position, and move the inner shaft member proximally with no displacement of the outer tubular member upon return of the trigger from the second position to the first position. The catheter assembly includes an outer tubular member, an inner shaft member, and a pusher assembly.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: May 5, 2020
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Daniel H. Shumer, Ronald G. Earles, Nianjiong J. Bei, Barbara Stamberg, Daniel Simon, Maria Del Rosario Nava, Michael L. Green, Matthew J. Gillick
  • Publication number: 20200122258
    Abstract: A method of pretinning a guidewire core made of shape memory alloy and having an elongate axis, comprising: placing a ball of solder in a pocket in a soldering block; melting the ball of solder; holding a guidewire core over the ball of solder; lowering the guidewire core into the ball of solder; removing the guidewire from the ball of solder.
    Type: Application
    Filed: December 20, 2019
    Publication date: April 23, 2020
    Applicant: Abbott Cardiovascular Systems Inc.
    Inventors: John A. Simpson, Jeffrey F. Dooley, Matthew J. Gillick
  • Patent number: 10624640
    Abstract: The invention provides devices, systems and methods for tissue approximation and repair at treatment sites. The devices, systems and methods of the invention will find use in a variety of therapeutic procedures, including endovascular, minimally-invasive, and open surgical procedures, and can be used in various anatomical regions, including the abdomen, thorax, cardiovascular system, heart, intestinal tract, stomach, urinary tract, bladder, lung, and other organs, vessels, and tissues. The invention is particularly useful in those procedures requiring minimally-invasive or endovascular access to remote tissue locations, where the instruments utilized must negotiate long, narrow, and tortuous pathways to the treatment site. In addition, many of the devices and systems of the invention are adapted to be reversible and removable from the patient at any point without interference with or trauma to internal tissues.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: April 21, 2020
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Kent Dell, Theodore Ketai, Tanmay Mishra, Stephanie Jones, Jacob Greenberg, Michael Hong, Daniel Hale, Francisco Valencia, Steven Tyler
  • Patent number: 10610387
    Abstract: A scaffold includes a radiopaque marker connected to a strut. The marker is retained within the strut by a head at one or both ends. The marker is attached to the strut by a process that includes forming a rivet from a radiopaque bead and attaching the rivet to the marker including deforming the rivet to enhance resistance to dislodgement during crimping or balloon expansion. The strut has a thickness of about 100 microns.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: April 7, 2020
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Rommel Lumauig, Joel Harrington, Chad Abunassar, David D. Hart, Cornel I. Ciurea, Mark A. Ritchie, Jay A. King, Jill McCoy
  • Patent number: 10595895
    Abstract: A rotational medical device comprising an airfoil on a rotational drive shaft to generate lift forces generally directed radially away from a rotational axis of the drive shaft, thereby enabling the drive shaft and/or a working element thereon to achieve a working diameter during rotation that is greater than the resting diameter of the drive shaft and/or a working element thereon.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: March 24, 2020
    Assignee: Cardiovascular Systems, Inc.
    Inventors: Joseph P. Higgins, Jeffrey R. Stone
  • Patent number: 10596018
    Abstract: An expandable stent for implanting in a body lumen, such as a coronary artery, peripheral artery, or other body lumen. In one aspect, the stent includes a butterfly pattern to which connecting links are attached. In another aspect, the stent embodies a non-directional structure.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: March 24, 2020
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventor: Diem Uyen Ta
  • Publication number: 20200078173
    Abstract: A system for repairing a tricuspid valve and positioned at a distal end of a catheter having a proximal end and a distal end and a bore extending between the proximal end and the distal end. The system comprises an activation element extending along the bore, the activation element including a first push element and a first pull element; a second push element and a second pull element; a third push element and a third pull element; wherein the first push element, the second push element, and the third push element are independently slideable in relation to each other; a first lower jaw being pin connected to the first pull element; a second lower jaw being pin connected to the second pull element; a third lower jaw being pin connected to the third pull element.
    Type: Application
    Filed: November 15, 2019
    Publication date: March 12, 2020
    Applicant: Abbott Cardiovascular Systems Inc.
    Inventors: Sean A. McNiven, Laura M. Kalvass, Benjamin L. Lee, Antonio N. Garcia
  • Publication number: 20200078019
    Abstract: The invention provides devices, systems and methods for tissue approximation and repair at treatment sites. The devices, systems and methods of the invention will find use in a variety of therapeutic procedures, including endovascular, minimally-invasive, and open surgical procedures, and can be used in various anatomical regions, including the abdomen, thorax, cardiovascular system, heart, intestinal tract, stomach, urinary tract, bladder, lung, and other organs, vessels, and tissues. The invention is particularly useful in those procedures requiring minimally-invasive or endovascular access to remote tissue locations, where the instruments utilized must negotiate long, narrow, and tortuous pathways to the treatment site. In addition, many of the devices and systems of the invention are adapted to be reversible and removable from the patient at any point without interference with or trauma to internal tissues.
    Type: Application
    Filed: November 18, 2019
    Publication date: March 12, 2020
    Applicant: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Kent DELL, Theodore KETAI, Tanmay MISHRA, Stephanie JONES, Jacob GREENBERG, Michael HONG, Daniel HALE, Francisco VALENCIA, Steven TYLER
  • Publication number: 20200069924
    Abstract: Catheter having an elongate tubular shaft including an inflation lumen and a guidewire lumen defined therein, the guidewire lumen extending along at least a distal length of an inner tubular member of the elongate tubular shaft. The catheter includes a distal tip member having a proximal end and a distal end, wherein the distal tip member is monolithic and the proximal end of the distal tip member is secured to a distal end of the inner tubular member. The catheter includes a balloon having a proximal portion and a distal portion, the proximal portion of the balloon sealingly coupled to the distal portion of the elongate tubular shaft. The distal portion of the balloon is sealingly coupled to the distal tip member and the balloon defines an inner chamber in communication with the inflation lumen, wherein the proximal end of the distal tip member is disposed within the inner chamber.
    Type: Application
    Filed: September 9, 2019
    Publication date: March 5, 2020
    Applicant: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Bruce M. Wilson, Kerry J. Williams
  • Patent number: 10575973
    Abstract: The invention is directed to an expandable stent for implantation in a body lumen, such as an artery, and a method for making it from a single length of tubing. The stent consists of a plurality of radially expandable cylindrical elements generally aligned on a common axis and interconnected by one or more links. A Y-shaped member comprised of a link and a U-shaped member has relief dimples formed in the curved portion of a valley to reduce localized stress and thereby reduce fatigue failure that can lead to link structure failure.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: March 3, 2020
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Diem Uyen Ta, Senthil Kumar Eswaran
  • Publication number: 20200060854
    Abstract: This invention is directed to an expandable stent for implantation in a body lumen, such as an artery, and a method for making it from a single length of tubing. The stent consists of a plurality of radially expandable cylindrical elements generally aligned on a common axis and interconnected by one or more links. A Y-shaped member is comprised of a U-shaped member and a link having a curved portion and a straight portion to improve the flexibility and thereby improve the fatigue performance of the Y-link junction.
    Type: Application
    Filed: October 30, 2019
    Publication date: February 27, 2020
    Applicant: Abbott Cardiovascular Systems Inc.
    Inventors: Diem Uyen Ta, Senthil K. Eswaran, Nianjiong Joan Bei
  • Patent number: 10556287
    Abstract: A method of pretinning a guidewire core made of shape memory alloy and having an elongate axis, comprising: placing a ball of solder in a pocket in a soldering block; melting the ball of solder; holding a guidewire core over the ball of solder; lowering the guidewire core into the ball of solder; removing the guidewire from the ball of solder.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: February 11, 2020
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: John A. Simpson, Jeffrey F. Dooley, Matthew J. Gillick
  • Patent number: 10555825
    Abstract: A medical device includes a balloon expanded scaffold crimped to a balloon catheter. The scaffold has a network of rings formed by struts connected at crowns and links connecting adjacent rings. The scaffold has a polymer coating and is crimped to the balloon. The scaffold is rotated, or allowed to rotate during crimping to improve results from crimping, such as reduced damage to the coating.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: February 11, 2020
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Victoria M. Gong, Stephen Pacetti
  • Publication number: 20200030025
    Abstract: A method for manufacturing a shaping structure having a generally helical profile and configured to support electrodes for delivering electric energy into a cylindrical lumen of a patient. The method comprises providing a mandrel with a circular cylindrical shape and forming a first hole in the mandrel along the elongate axis, such that opposing ends of a bore of the first hole emerge at the proximal end and at the distal end; forming a second hole in the mandrel to extend from the curved surface to connect with the first hole; wrapping a metal wire around the mandrel; and inserting opposing ends of the metal wire into the second and the third hole respectively, and threading the opposing ends of the metal wire until they emerge from the opposing ends of the bore of the first hole; finally, heating the mandrel and the wire.
    Type: Application
    Filed: October 1, 2019
    Publication date: January 30, 2020
    Applicant: Abbott Cardiovascular Systems Inc.
    Inventors: Benjamyn Serna, Jesus Magana, Michael Ngo, John Stankus
  • Patent number: 10537312
    Abstract: An apparatus for closing an opening in a body tissue. The apparatus includes a shaft, a plurality of arms, and an expander. The arms each extend between a proximal end and a distal end. The distal end of each arm is hingedly attached to or integrally formed with the shaft. The arms are laterally spaced apart from each other. The arms are movable between a retracted configuration, in which the arms are each aligned along the shaft, and a deployed configuration, in which the proximal end of each arm pivots respectively about the distal end of the arm so as to extend laterally away from the shaft. The expander is positioned within the shaft, and movement of the expander causes the arms to move between the retracted and deployed configurations. Methods of using the apparatus are also included.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: January 21, 2020
    Assignee: Abbott Cardiovascular Systems, Inc.
    Inventor: Laveille Kao Voss
  • Publication number: 20200016378
    Abstract: Balloon catheter includes an outer shaft having a hypotube and a monolithic single-layer distal outer member, a balloon in fluid communication with an inflation lumen, and a monolithic inner tubular member having a guidewire lumen defined therethrough. The outer shaft has the inflation lumen defined therethrough. The monolithic single-layer distal outer member is necked to a reduced diameter along an entire length thereof. A proximal end of the monolithic single-layer distal outer member is coupled to the hypotube. A distal section of the hypotube comprises a skive defined by a first angled cut, an axial cut, and a second angled cut. The balloon has a proximal balloon shaft coupled to a distal end of the monolithic single-layer distal outer member. The monolithic inner tubular member extends distally from a proximal port in the monolithic single-layer distal outer member through the balloon to form a tip.
    Type: Application
    Filed: September 24, 2019
    Publication date: January 16, 2020
    Applicant: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Kerry J. Williams, George Doratt
  • Patent number: 10531971
    Abstract: Catheter including an inner tubular member, an outer tubular member movable relative to the inner tubular member, and an expandable member coupled to the distal end portion of the inner tubular member. The expandable member having an inner chamber and transitionable between a deflated configuration and an inflated configuration. A pressure chamber is defined by the proximal seal, the distal seal, the exterior surface of the inner tubular member and interior surface of the outer tubular member, with the pressure chamber in fluid communication with a fluid flow port, wherein fluid introduced through the fluid flow port and into the pressure chamber applies a force on the proximal seal to urge the outer tubular member in a proximal direction.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: January 14, 2020
    Assignee: Abbott Cardiovascular System Inc.
    Inventor: Anna Marie Haarmann-Thiemann
  • Patent number: 10525552
    Abstract: The present invention involves laser machining polymer substrates to form a stent with laser parameters that minimize damage to the substrate in a surface region adjacent to the machined edge surface. The wavelength and pulse width are selected for this unique application and they can be controlled to minimize the surface modifications (such as voids, cracks which are induced by the laser-material interaction) which contribute to the variation in mechanical properties with distance from the edge surface, bulk mechanical properties, or a combination thereof.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: January 7, 2020
    Assignee: ABBOTT CARDIOVASCULAR SYSTEMS INC.
    Inventors: Joel Harrington, Ryan Vaughan, Kevin Jow, William Pippey, Yung-Ming Chen