Patents Assigned to Carl Zeiss Industrial Metrology, LLC
  • Patent number: 11813791
    Abstract: A method of producing a workpiece includes obtaining CAD data representing the workpiece in multiple workpiece layers. The CAD data includes multiple workpiece layer definitions corresponding respectively to the workpiece layers. The method includes selecting a first workpiece layer definition, preparing a powder bed of powder material on a build platform, and producing, based on the selected workpiece layer definition, a workpiece layer on the build platform by controlling a layer tool to selectively melt or sinter the powder material on the build platform. The method includes assessing the produced workpiece layer, including measuring the produced workpiece layer using a measuring head, analyzing the measurements of the produced workpiece layer, and, in response to the analysis indicating that the produced workpiece layer is defective, reprocessing the produced workpiece layer by controlling the layer tool to selectively melt or sinter the powder material on the build platform.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: November 14, 2023
    Assignees: Carl Zeiss Industrielle Messtechnik GmbH, Carl Zeiss Industrial Metrology, LLC
    Inventors: Marcin B. Bauza, Tobias Held, Richard H. Knebel, Thomas Engel, Nils Haverkamp, Rainer Sagemueller, Dominik Seitz
  • Patent number: 11633790
    Abstract: An apparatus includes a control system that defines a test part having multiple features of multiple feature types. The control system controls an additive manufacturing (AM) machine to print multiple copies of the test part, with each copy being printed according to a respective set of values used as printing parameters. A measurement system obtains a computed tomography (CT) image of each of the copies of the test part. An analysis system, for each of the plurality of feature types, analyzes the CT images to identify a selected set of values for the printing parameters. The analysis system identifies a portion of the CT image related to a first feature and assesses its density based on an average grayscale value. The AM machine is then controlled to print production parts according to, for each feature type of the production parts, the selected set of values for the printing parameters.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: April 25, 2023
    Assignees: Carl Zeiss Industrial Metrology, LLC, UT-Battelle, LLC
    Inventors: Pradeep Bhattad, Paul Brackman, Curtis Frederick, Marcin B. Bauza, Edson Costa Santos, Ryan Dehoff, Alex Plotkowski, Aleksandr Lisovich, Jason James Tenboer
  • Patent number: 11499814
    Abstract: An optical coherence tomography (OCT) system (63) is used to inspect bonding points (66A, 66B, 66C) sandwiched between two materials (layers 62, 64 of e.g. displays). The OCT differentiates between a bonding point, e.g. a weld, and air gaps between the two materials. The bonding points are identified as breaks in the air gap between the materials. By extracting various physical characteristics of the bonding points and the gap between the two materials, the present system determines whether the bonding is faulty.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: November 15, 2022
    Assignees: CARL ZEISS AG, CARL ZEISS INDUSTRIAL METROLOGY LLC, CARL ZEISS MEDITEC, INC.
    Inventors: Michael Totzeck, Marcin B. Bauza, Jochen Straub, Muzammil Arain, Matthew J. Everett
  • Patent number: 11104064
    Abstract: A method of producing a workpiece by using additive manufacturing techniques includes obtaining CAD data representing the workpiece with workpiece layer definitions defining workpiece layers. The method includes selecting a first workpiece layer definition. The method includes preparing a powder bed of powder material on a build platform. The method includes measuring individual characteristics of the powder material on the build platform using a measuring head. The method includes producing, based on the selected workpiece layer definition, a workpiece layer on the build platform. The producing includes controlling a layer tool to selectively melt or sinter the powder material on the build platform. The producing is further based on the measured individual characteristics of the powder material to correct for detected flaws in the powder bed. The method includes selecting each one of the workpiece layer definitions and repeating the preparing, the measuring, and the producing for the selected definition.
    Type: Grant
    Filed: January 11, 2020
    Date of Patent: August 31, 2021
    Assignees: Carl Zeiss Industrielle Messtechnik GmbH, Carl Zeiss Industrial Metrology, LLC
    Inventors: Marcin B. Bauza, Richard H. Knebel, Thomas Engel, Nils Haverkamp, Rainer Sagemueller, Dominik Seitz, Tobias Held
  • Patent number: 10875592
    Abstract: An automobile manufacturing plant for manufacturing automobiles has a series of manufacturing sites including a part forming shop, a body shop, a paint shop and an assembly shop. Each manufacturing site is associated with a respective inspection site. The respective inspection sites provide inspection data representing at least one of dimensional characteristics, shape characteristics or surface characteristics of the car body parts, the car body, the painted car body and the car-on-wheels produced in the series of manufacturing sites. The inspection data from the plurality of inspection sites is correlated in a common data base server. Inspection sites at a later stage of the manufacturing process can use inspection data from previous stages and automatically decide whether or not a car body part, the car body, the painted car body or the car-on-wheels has to be reworked.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: December 29, 2020
    Assignees: Carl Zeiss Industrielle Messtechnik GmbH, Carl Zeiss Industrial Metrology, LLC
    Inventors: Gleiton Luiz Damoulis, Marcin B. Bauza
  • Patent number: 10532513
    Abstract: A method of producing a workpiece by using additive manufacturing techniques includes obtaining computer-aided design data representing the workpiece in multiple layers. The method includes providing build platforms and layer tools. Each layer tool is moveable relative to a respective build platform and configured to generate or solidify a material layer on the respective build platform. The method includes producing a first defined material layer of the workpiece on a first build platform by controlling a first layer tool according to a first layer definition. The method includes transferring the first defined material layer from the first build platform to a second build platform and measuring the first defined material layer using a first measuring head to measure individual characteristics. The method includes producing further material layers of the workpiece by controlling a second layer tool in accordance with further layer definitions as a function of the measured individual characteristics.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: January 14, 2020
    Assignees: Carl Zeiss Industrielle Messtechnik GmbH, Carl Zeiss Industrial Metrology, LLC
    Inventors: Marcin B. Bauza, Richard H. Knebel, Thomas Engel, Nils Haverkamp, Rainer Sagemueller, Dominik Seitz, Tobias Held
  • Patent number: 10261028
    Abstract: A device for optically inspecting a surface of a sample includes: a screen providing a first light profile pattern formed with lighter and darker areas wherein the areas form a first spatial intensity profile having a first spatial period, a holder for positioning the sample with the surface relative to the first pattern such that the first pattern is reflected by the surface, an auxiliary lens and/or curved mirror arranged between the screen and the holder for providing a second light profile pattern having areas which form a second spatial intensity profile with a second spatial period when at least a part of the first pattern passes the lens or is reflected by the mirror, an image recording unit for receiving an image of the second pattern reflected from the surface of the sample, and an evaluation unit for determining properties of the surface in dependence on the image.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: April 16, 2019
    Assignee: Carl Zeiss Industrial Metrology, LLC
    Inventors: Christopher M. Cilip, Drew Schiltz
  • Patent number: 10220566
    Abstract: A method and an arrangement for producing a workpiece using additive manufacturing techniques involve in-process measurement in order to determine individual characteristics of one or more workpiece layers. In particular, dimensional and/or geometrical characteristics of a workpiece layer are measured before the next workpiece layer is produced. Advantageously, the measurement results are fed back into the production process in order to increase accuracy and precision of the production process.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: March 5, 2019
    Assignees: Carl Zeiss Industrielle Messtechnik GmbH, Carl Zeiss Industrial Metrology, LLC
    Inventors: Marcin B. Bauza, Richard H. Knebel, Thomas Engel, Nils Haverkamp, Rainer Sagemueller, Dominik Seitz, Tobias Held
  • Patent number: 9109747
    Abstract: A linear motion machine includes a base having an upper surface configured to support one or more work pieces and an instrument movably mounted to the base via a plurality of guideways permitting movement of the instrument relative to the base along three axes. At least one of the pluralities of guideways includes an elongated guideway member made of a plurality of elongated generally planar web members. Each of the elongated generally planar web members has a length and a pair of opposite side edges running along the length. The plurality of elongated generally planar web members are bonded together at least at one or more of the side edges to form the elongated guideway member. The elongated guideway member includes a ceramic material.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: August 18, 2015
    Assignee: Carl Zeiss Industrial Metrology, LLC
    Inventor: Josef Schernthaner