Abstract: A projection objective for microlithography for imaging an object field onto an image field includes: a first partial objective for imaging the object field onto a first real intermediate image; a second partial objective for imaging the first intermediate image onto a second real intermediate image; a third partial objective for imaging the second intermediate image onto the image field, the third partial objective including an aperture; and a first folding mirror for deflecting radiation toward a concave mirror and a second folding mirror for deflecting the radiation from the concave mirror toward the image plane; in which the projection objective is an immersion projection objective in which during operation an immersion liquid is situated between a last lens surface and an image plane, and at least one surface of at least one lens in the second partial objective has an antireflection coating including at least six layers.
Type:
Grant
Filed:
January 21, 2016
Date of Patent:
August 8, 2017
Assignee:
Carl Zeiss SMT GmbH
Inventors:
Alexander Epple, Vladimir Kamenov, Toralf Gruner, Thomas Schicketanz
Abstract: A projection exposure system (10) for microlithography. The system includes projection optics (12) configured to image mask structures into a substrate plane (16), an input diffraction element (28) which is configured to convert irradiated measurement radiation (21) into at least two test waves (30) directed onto the projection optics (12) with differing propagation directions, a detection diffraction element (34; 28) which is disposed in the optical path of the test waves (30) after the latter have passed through the projection optics (12) and is configured to produce a detection beam (36) from the test waves (30) which has a mixture of radiation portions of both test waves (30), a photo detector (38) disposed in the optical path of the detection beam (36) which is configured to record the radiation intensity of the detection beam (36), time resolved, and an evaluation unit which is configured to determine the lateral imaging stability of the projection optics (12) from the radiation intensity recorded.
Abstract: A microlithographic apparatus includes an objective that includes a transmission filter that is configured to variably modify a light irradiance distribution in a projection light path. The transmission filter includes a plurality of gas outlet apertures that are configured to emit gas flows that pass through a space through which projection light propagates during operation of the microlithographic apparatus. The transmission filter further includes a control unit which is configured to vary a number density of ozone molecules in the gas flows individually for each gas flow. In this manner it is possible to finally adjust the transmittance distribution of the transmission filter.
Abstract: The invention relates to a method for processing a substrate with a focussed particle beam which incidents on the substrate, the method comprising the steps of: (a) generating at least one reference mark on the substrate using the focused particle beam and at least one processing gas, (b) determining a reference position of the at least one reference mark, (c) processing the substrate using the reference position of the reference mark, and (d) removing the at least one reference mark from the substrate.
Type:
Grant
Filed:
May 9, 2011
Date of Patent:
August 1, 2017
Assignee:
Carl Zeiss SMT GmbH
Inventors:
Tristan Bret, Petra Spies, Thorsten Hofmann
Abstract: The invention relates to an optical system of a microlithographic projection exposure apparatus, in particular for operation in the EUV, comprising a mirror arrangement composed of a plurality of mutually independently adjustable mirror elements, and at least one polarization-influencing arrangement arranged upstream of the mirror arrangement relative to the light propagation direction, wherein the polarization-influencing arrangement has a group of first reflection surfaces and a group of second reflection surfaces, wherein the first reflection surfaces are tiltable independently of one another, and wherein, during the operation of the optical system, light reflected at respectively one of the first reflection surfaces can be directed onto the mirror arrangement via respectively a different one of the second reflection surfaces depending on the tilting of the first reflection surface.
Abstract: The invention concerns a projection objective of a microlithographic projection exposure apparatus designed for EUV, for imaging an object plane illuminated in operation of the projection exposure apparatus into an image plane. The projection objective has at least one mirror segment arrangement comprising a plurality of separate mirror segments. Associated with the mirror segments of the same mirror segment arrangement are partial beam paths which are different from each other and which respectively provide for imaging of the object plane (OP) into the image plane (IP). The partial beam paths are superposed in the image plane (IP). At least two partial beams which are superposed in the same point in the image plane (IP) were reflected by different mirror segments of the same mirror segment arrangement.
Type:
Grant
Filed:
March 15, 2016
Date of Patent:
August 1, 2017
Assignee:
Carl Zeiss SMT GmbH
Inventors:
Hartmut Enkisch, Stephan Muellender, Hans-Juergen Mann, Rolf Freimann
Abstract: A projection exposure apparatus (10) for microlithography has a plurality of optical components (M1-M6) forming an exposure beam path, as well as a distance measurement system (30, 130, 230) configured to measure a distance between at least one of the optical components and a reference element (40, 140, 240). The distance measurement system comprises a frequency comb generator (32, 132, 232), which is configured to generate electromagnetic radiation (36, 236) having a comb-shaped frequency spectrum.
Type:
Grant
Filed:
January 16, 2015
Date of Patent:
July 25, 2017
Assignee:
Carl Zeiss SMT GmbH
Inventors:
Alexander Wolf, Markus Schwab, Toralf Gruner, Joachim Hartjes
Abstract: A projection objective having a number of adjustable optical elements is optimized with respect to a number of aberrations by specifying a set of parameters describing imaging properties of the objective, each parameter in the set having an absolute value at each of a plurality of field points in an image plane of the projection objective. At least one of the optical elements is adjusted such that for each of the parameters in the set, the field maximum of its absolute value is minimized.
Abstract: A measuring arrangement for measuring optical properties of a reflective optical element, in particular for microlithography, with an EUV light source (5), a detector (20) configured to detect EUV radiation reflected at the reflective optical element (10), and an imaging system (30, 40, 50, 60, 70, 80, 90), which images object points on the reflective optical element onto respective image points on the detector, wherein the imaging system is configured to reflect the EUV radiation, a first optical component (31, 41, 51, 61, 71, 81, 91), and at least one second optical component (32, 42, 52, 62, 72, 82, 92). Both at the first optical component and at the second optical component, reflection angles with respect to respective surface normals that respectively occur during reflection of the EUV radiation are at least 70°.
Abstract: Support elements for an optical element and a method for supporting an optical element are disclosed. The disclosure can be used in connection with arbitrary optical apparatuses or optical imaging methods. In particular, the disclosure can be used in connection with the microlithography employed in the manufacture of microelectronic circuits.
Abstract: A mirror arrangement for an EUV projection exposure apparatus for microlithography comprises a plurality of mirrors each having a layer which is reflective in the EUV spectral range and to which EUV radiation can be applied, and having a main body. In this case, at least one mirror of the plurality of mirrors has at least one layer comprising a material having a negative coefficient of thermal expansion. Moreover, a method for operating the mirror arrangement and a projection exposure apparatus are described. At least one heat source is arranged, in order to locally apply heat in a targeted manner to the at least one layer having a negative coefficient of thermal expansion of the at least one mirror.
Type:
Grant
Filed:
December 29, 2014
Date of Patent:
July 18, 2017
Assignee:
Carl Zeiss SMT GmbH
Inventors:
Boris Bittner, Norbert Wabra, Sonja Schneider, Ricarda Schoemer, Hendrik Wagner, Rumen Iliew, Walter Pauls
Abstract: A projection exposure tool for microlithography for imaging mask structures of an image-providing substrate onto a substrate to be structured includes a measuring apparatus configured to determine a relative position of measurement structures disposed on a surface of one of the substrates in relation to one another in at least one lateral direction with respect to the substrate surface and to thereby simultaneously measure a number of measurement structures disposed laterally offset in relation to one another.
Abstract: An optical element comprises a reflecting coating on a substrate. The reflecting coating contains boron and can have a thickness of more than 50 nm.
Abstract: An optical system has a housing with a mount and an opening to a receiving region, the receiving region being located within the housing and including the mount. At least one optical element is inserted into and removed from the receiving region through the opening, and at least one gas supply device provides a flow of gas in the receiving region. An associated method of inserting or removing an optical element into or from a receiving region in a housing is also disclosed.
Type:
Grant
Filed:
August 22, 2016
Date of Patent:
July 11, 2017
Assignee:
Carl Zeiss SMT GmbH
Inventors:
Guido Soyez, Stephan Back, Joachim Buechele, Julian Kaller, Guido Limbach, Harald Woelfle
Abstract: A method of operating an illumination system of a microlithographic projection exposure apparatus is provided. A set of illumination parameters that describe properties of a light bundle which converges at a point on a mask to be illuminated by the illumination system is first determined. Optical elements whose optical effect on the illumination parameters can be modified as a function of control commands are furthermore determined, as well as sensitivities with which the illumination parameters react to an adjustment of the optical elements, induced by the control commands. The control commands are then determined while taking the previously determined sensitivities into account, such that deviations of the illumination parameters from predetermined target illumination parameters satisfy a predetermined minimisation criterion. These control commands are applied to the optical elements, before the mask is illuminated.
Abstract: A method for measuring an optical symmetry property on a microlithographic projection exposure apparatus (10) together with a microlithographic projection exposure apparatus and an associated microlithographic measurement mask are disclosed. The method includes arranging at least one measurement structure (60; 66) in an exposure beam path (32) of the projection exposure apparatus, wherein the measurement structure includes a pinhole stop (62) and a diffraction grating (64) arranged within an aperture (63) of the pinhole stop. Furthermore, the method includes measuring an intensity of a diffracted radiation generated at the diffraction grating (64) after interaction of the radiation with at least one optical element (22) of the projection exposure apparatus.
Abstract: A mirror (1) for the EUV wavelength range having a reflectivity of greater than 40% for at least one angle of incidence of between 0° and 25° includes a substrate (S) and a layer arrangement, wherein the layer arrangement has at least one non-metallic individual layer (B, H, M), and wherein the non-metallic individual layer (B, H, M) has a doping with impurity atoms of between 10 ppb and 10%, in particular between 100 ppb and 0.1%, providing the non-metallic individual layer (B, H, M) with a charge carrier density of greater than 6*1010 cm?3 and/or an electrical conductivity of greater than 1*10?3 S/m, in particular with a charge carrier density of greater than 6*1013 cm?3 and/or an electrical conductivity of greater than 1 S/m.
Abstract: A projection exposure system and a method for operating a projection exposure system for microlithography with an illumination system are disclosed. The illumination system includes at least one variably adjustable pupil-defining element. The illumination stress of at least one optical element of the projection exposure system is determined automatically in the case of an adjustment of the at least one variably adjustable pupil-defining element. From the automatically determined illumination stress, the maximum radiant power of the light source is set or determined and/or in which an illumination system is provided with which different illumination settings can be made. Usage of the projection exposure system is recorded and, from the history of the usage, at least one state parameter of at least one optical element of the projection exposure system is determined.
Type:
Grant
Filed:
June 17, 2015
Date of Patent:
July 4, 2017
Assignee:
Carl Zeiss SMT GmbH
Inventors:
Bernhard Kneer, Markus Deguenther, Toralf Gruner
Abstract: A projection exposure system (10) for microlithography which includes: a mask holding device (14) holding a mask (18) with mask structures (20) disposed on the mask, a substrate holding device (36) holding a substrate (30), projection optics (26) imaging the mask structures (20) onto the substrate (30) during an exposure process, and a measurement structure (48) disposed in a defined position with respect to a reference element (16) of the projection exposure system (10), which defined position is mechanically uncoupled from the position of the mask holding device (14). The projection exposure system (10) also includes a detector (52) arranged to record an image of the measurement structure (48) imaged by the projection optics (26). The projection exposure system (10) is configured such that during operation of the projection exposure system (10) the imaging of the mask structures (20) and the imaging of the measurement structure (48) take place at the same time by the projection optics (26.
Type:
Grant
Filed:
April 6, 2015
Date of Patent:
July 4, 2017
Assignee:
Carl Zeiss SMT GmbH
Inventors:
Ulrich Mueller, Joachim Stuehler, Oswald Gromer, Rolf Freimann, Paul Kaufmann, Bernhard Geuppert
Abstract: Lithography apparatus and device manufacturing methods are disclosed in which means are provided for reducing the extent to which vibrations propagate between a first element of a projection system and a second element of a projection system. Approaches disclosed include the use of plural resilient members in series as part of a vibration isolation system, plural isolation frames for separately supporting first and second projection system frames, and modified connection positions for the interaction between the first and second projection system frames and the isolation frame(s).
Type:
Grant
Filed:
September 14, 2015
Date of Patent:
July 4, 2017
Assignees:
ASML Netherlands B.V., Carl Zeiss SMT GMBH
Inventors:
Marc Wilhelmus Maria Van Der Wijst, Hans Butler, Erik Roelof Loopstra, Bernhard Geuppert, Marco Hendrikus Hermanus Oude Nijhuis, Rodolfo Guglielmi Rabe, Yim Bun Patrick Kwan, Dick Antonius Hendrikus Laro