Patents Assigned to Carlson Software, Inc.
-
Patent number: 11662470Abstract: A GNSS data collection system includes a pole mounted GNSS receiver and inclination sensors. The range pole has an adjustable length and an integrated electronic measurement device to capture and provide length data. A data collection module provides a data collection graphical user interface (GUI) visible on a hand-held data collector computer. The data collector computer is communicably coupled to the GNSS receiver and/or the electronic measurement device and receives three-dimensional location data, the length data, and inclination data for the range pole in real-time. The inclination data and height of the range pole are used to calculate and display horizontal distance and direction to level the GNSS receiver.Type: GrantFiled: July 9, 2021Date of Patent: May 30, 2023Assignee: Carlson Software, Inc.Inventors: William C. Herter, Jesus Latova, Matthew Hutchinson, Sarah Winter, Ken Trent
-
Patent number: 11474257Abstract: A GNSS data collection system includes a pole mounted GNSS receiver and inclination sensors. A data collection module provides a data collection graphical user interface (GUI) visible on a hand-held data collector computer. The data collector computer is communicably coupled to the GNSS receiver and receives three-dimensional location data and inclination data for the range pole in real-time. A virtual level component uses the inclination data to display on the GUI real-time tilt information in the form of a virtual bubble level indicator. The inclination data and height of the range pole are used to calculate and display horizontal distance and direction to level the GNSS receiver.Type: GrantFiled: November 30, 2020Date of Patent: October 18, 2022Assignee: Carlson Software, Inc.Inventors: Jesus Latova, William C. Herter
-
Patent number: 11422270Abstract: A GNSS data collection system includes a pole mounted GNSS receiver and inclination sensors. A data collection module provides a data collection graphical user interface (GUI) visible on a hand-held data collector computer. The data collector computer is communicably coupled to the GNSS receiver and receives three-dimensional location data and inclination data for the range pole in real-time. A virtual level component uses the inclination data to display on the GUI real-time tilt information in the form of a virtual bubble level indicator. The inclination data and height of the range pole are used to calculate and display horizontal distance and direction to level the GNSS receiver, using: incline=sqrt(xtilt*xtilt+ytilt*ytilt) where, xtilt=the inclination data for the range pole along the x axis, ytilt=the inclination data for the range pole along the y axis, and horizontaldistancefromlevel=rh*sin(incline) where, rh=the height of the range pole.Type: GrantFiled: May 21, 2019Date of Patent: August 23, 2022Assignee: Carlson Software, Inc.Inventors: Halvard Beruit Teigland, Jesus Latova, William C. Herter
-
Patent number: 11204245Abstract: A Robotic Total Station (RTS) system includes an RTS disposed for at least two-axis rotation on a tripod, and a rover including a pole mounted prism and GNSS receiver with inclination sensors. The RTS rotates on the tripod to point towards the rover and generate an RTS-position measurement using an optical signal reflected by the prism. The RTS is communicably coupled to the data collector and/or the GNSS receiver, and receives and uses the GNSS-derived position measurements and the inclination data for the range pole in real-time, to automatically track and point the RTS towards the prism.Type: GrantFiled: August 27, 2019Date of Patent: December 21, 2021Assignee: Carlson Software, Inc.Inventors: Jesus Latova, William C. Herter, Matthew Hutchinson, Sarah Winter, Ken Trent
-
Publication number: 20210333408Abstract: A GNSS data collection system includes a pole mounted GNSS receiver and inclination sensors. The range pole has an adjustable length and an integrated electronic measurement device to capture and provide length data. A data collection module provides a data collection graphical user interface (GUI) visible on a hand-held data collector computer. The data collector computer is communicably coupled to the GNSS receiver and/or the electronic measurement device and receives three-dimensional location data, the length data, and inclination data for the range pole in real-time. The inclination data and height of the range pole are used to calculate and display horizontal distance and direction to level the GNSS receiver.Type: ApplicationFiled: July 9, 2021Publication date: October 28, 2021Applicant: Carlson Software Inc.Inventors: William C. Herter, Jesus Latova, Matthew Hutchinson, Sarah Winter, Ken Trent
-
Publication number: 20210080592Abstract: A GNSS data collection system includes a pole mounted GNSS receiver and inclination sensors. A data collection module provides a data collection graphical user interface (GUI) visible on a hand-held data collector computer. The data collector computer is communicably coupled to the GNSS receiver and receives three-dimensional location data and inclination data for the range pole in real-time. A virtual level component uses the inclination data to display on the GUI real-time tilt information in the form of a virtual bubble level indicator. The inclination data and height of the range pole are used to calculate and display horizontal distance and direction to level the GNSS receiver.Type: ApplicationFiled: November 30, 2020Publication date: March 18, 2021Applicant: Carlson Software, Inc.Inventors: Jesus Latova, William C. Herter
-
Patent number: 10871572Abstract: A GNSS data collection system includes a pole mounted GNSS receiver and inclination sensors. A data collection module provides a data collection graphical user interface (GUI) visible on a hand-held data collector computer. The data collector computer is communicably coupled to the GNSS receiver and receives three-dimensional location data and inclination data for the range pole in real-time. A virtual level component uses the inclination data to display on the GUI real-time tilt information in the form of a virtual bubble level indicator. The inclination data and height of the range pole are used to calculate and display horizontal distance and direction to level the GNSS receiver, using: incline=sqrt(xtilt*xtilt+ytilt*ytilt) where, xtilt=the inclination data for the range pole along the x axis, ytilt=the inclination data for the range pole along the y axis, and horizontaldistancefromlevel=rh*sin(incline) where, rh=the height of the range pole.Type: GrantFiled: September 12, 2018Date of Patent: December 22, 2020Assignee: Carlson Software, Inc.Inventors: Jesus Latova, William C. Herter
-
Publication number: 20200011665Abstract: A Robotic Total Station (RTS) system includes an RTS disposed for at least two-axis rotation on a tripod, and a rover including a pole mounted prism and GNSS receiver with inclination sensors. The RTS rotates on the tripod to point towards the rover and generate an RTS-position measurement using an optical signal reflected by the prism. The RTS is communicably coupled to the data collector and/or the GNSS receiver, and receives and uses the GNSS-derived position measurements and the inclination data for the range pole in real-time, to automatically track and point the RTS towards the prism.Type: ApplicationFiled: August 27, 2019Publication date: January 9, 2020Applicant: Carlson Software, Inc.Inventors: Jesus Latova, William C. Herter, Matthew Hutchinson, Sarah Winter, Ken Trent
-
Patent number: 10466050Abstract: A GNSS data collection system includes a pole mounted GNSS receiver and inclination sensors. A data collection module provides a data collection graphical user interface (GUI) visible on a hand-held data collector computer. The data collector computer is communicably coupled to the GNSS receiver and receives three-dimensional location data and inclination data for the range pole in real-time. A virtual level component uses the inclination data to display on the GUI real-time tilt information in the form of a virtual bubble level indicator. The inclination data and height of the range pole are used to calculate and display horizontal distance and direction to level the GNSS receiver, using: incline=a cos(cos(x_tilt)*cos(y_tilt)) where, xtilt=the inclination data for the range pole along the x axis, ytilt=the inclination data for the range pole along the y axis, and horizontaldistancefromlevel=rh*sin(incline) where, rh=the height of the range pole.Type: GrantFiled: April 4, 2018Date of Patent: November 5, 2019Assignee: Carlson Software, Inc.Inventors: Jesus Latova, William C. Herter, Matthew Hutchinson, Sarah Winter, Ken Trent
-
Patent number: 10101459Abstract: A GNSS data collection system includes a pole mounted GNSS receiver and inclination sensors. A data collection module provides a data collection graphical user interface (GUI) visible on a hand-held data collector computer. The data collector computer is communicably coupled to the GNSS receiver and receives three-dimensional location data and inclination data for the range pole in real-time. A virtual level component uses the inclination data to display on the GUI real-time tilt information in the form of a virtual bubble level indicator. The inclination data and height of the range pole are used to calculate and display horizontal distance and direction to level the GNSS receiver.Type: GrantFiled: June 4, 2015Date of Patent: October 16, 2018Assignee: Carlson Software, Inc.Inventors: Jesus Latova, William C. Herter
-
Patent number: 7596418Abstract: A method and system is provided for producing erosionally stable fluvial geomorphic landscape designs in a computer aided design environment. A topography input module is configured to access a three-dimensional model of existing topography of a site, while a data input module is configured to receive climatic and hydrological data associated with the site. A channel geometry module is configured to utilize the three-dimensional model and the data to generate dimensions for one or more proposed ephemeral channels. A design surface module generates a graphical view of a proposed landform at the site using the existing topography, the proposed ephemeral channels, and optionally, various complementary topographic features.Type: GrantFiled: September 13, 2004Date of Patent: September 29, 2009Assignee: Carlson Software, Inc.Inventor: Nicholas Bugosh