Patents Assigned to Carver Scientific, Inc.
  • Patent number: 10403440
    Abstract: Capacitive energy storage devices (CESDs) are disclosed, along with methods of making and using the CESDs. A CESD includes an array of electrodes with spaces between the electrodes. A dielectric material occupies spaces between the electrodes; regions of the dielectric material located between adjacent electrodes define capacitive elements. The disclosed CESDs are useful as energy storage devices and/or memory storage devices.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: September 3, 2019
    Assignee: Carver Scientific, Inc.
    Inventors: David Reginald Carver, Bradford Wesley Fulfer, Chase Andrepont, Sean Claudius Hall, Sean William Reynolds
  • Patent number: 10227432
    Abstract: A gaseous p-xylylene monomer, formed by reacting xylene with a monatomic oxygen source, is mixed with a functional gaseous monomer. The resulting mixture may be deposited and solidified on a substrate, which may optionally be exposed to a photoinitiating light energy and/or a permittivity enhancing electric or magnetic field. Alternatively, the resulting gaseous mixture may be trapped and condensed in a condenser, which may contain a solvent to facilitate trapping. The condensate may be mixed with a tertiary substance, e.g., another monomer, a reactive substance or an inert material.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: March 12, 2019
    Assignee: Carver Scientific, Inc.
    Inventors: David R. Carver, Robert G. Carver, Bradford Fulfer, Jaime Gibbs
  • Patent number: 10199165
    Abstract: Embodiments of a high-permittivity, low-leakage energy storage device, such as a capacitor, and methods of making the energy storage device are disclosed. The disclosed device includes electrically conductive first and second electrodes, and a sterically constrained dielectric film disposed between the first and second electrodes. The sterically constrained dielectric film comprises a plurality of polymeric molecules, and at least some of the polymeric molecules are bound to the first electrode. The disclosed device may include an insulative layer between the first electrode and the dielectric film and/or between the second electrode and the dielectric film.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: February 5, 2019
    Assignee: Carver Scientific, Inc.
    Inventors: David Reginald Carver, Robert Glenn Carver, Bradford Wesley Fulfer, Jaime Hayes Gibbs, Sean Claudius Hall, Aaron Trent Priddy, Sean William Reynolds
  • Publication number: 20180158617
    Abstract: Capacitive energy storage devices (CESDs) are disclosed, along with methods of making and using the CESDs. A CESD includes an array of electrodes with spaces between the electrodes. A dielectric material occupies spaces between the electrodes; regions of the dielectric material located between adjacent electrodes define capacitive elements. The disclosed CESDs are useful as energy storage devices and/or memory storage devices.
    Type: Application
    Filed: November 30, 2017
    Publication date: June 7, 2018
    Applicant: Carver Scientific, Inc.
    Inventors: David Reginald Carver, Bradford Wesley Fulfer, Chase Andrepont, Sean Claudius Hall, Sean William Reynolds
  • Patent number: 9928958
    Abstract: A method is provided for making a high permittivity dielectric material for use in capacitors. Several high permittivity materials in an organic nonconductive media with enhanced properties and methods for making the same are disclosed. A general method for the formation of thin films of some particular dielectric material is disclosed, wherein organic polymers are utilized to produce low conductivity dielectric coatings. Additionally, a method whereby the formation of certain transition metal salts as salt or oxide matrices is demonstrated at low temperatures utilizing mild reducing agents. Further, a circuit structure and associated method of operation for the recovery and regeneration of the leakage current from the long-term storage capacitors is provided in order to enhance the manufacturing yield and utility performance of such devices.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: March 27, 2018
    Assignee: Carver Scientific, Inc.
    Inventor: David Reginald Carver
  • Patent number: 9916930
    Abstract: A method is provided for making a high permittivity dielectric material for use in capacitors. Several high permittivity materials in an organic nonconductive media with enhanced properties and methods for making the same are disclosed. A general method for the formation of thin films of some particular dielectric material is disclosed, wherein organic polymers are utilized to produce low conductivity dielectric coatings. Additionally, a method whereby the formation of certain transition metal salts as salt or oxide matrices is demonstrated at low temperatures utilizing mild reducing agents. Further, a circuit structure and associated method of operation for the recovery and regeneration of the leakage current from the long-term storage capacitors is provided in order to enhance the manufacturing yield and utility performance of such devices.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: March 13, 2018
    Assignee: Carver Scientific, Inc.
    Inventor: David Reginald Carver
  • Patent number: 9899846
    Abstract: Embodiments of methods for discharging an entropic energy storage device (EESD) that stores and releases entropic energy are disclosed. Embodiments of circuits including the EESD also are disclosed. The method includes providing a circuit including an EESD charged to a first voltage level, the EESD including first and second electrodes with a dielectric film positioned there between, the dielectric film comprising an entropic material, and the first electrode charged positively or negatively with respect to the second electrode; and applying a reversed polarization electric potential to the first electrode of the EESD in a first mode of operation of the circuit for a discharge period of time, thereby supplying power from the EESD to a load. In some embodiments, the method includes a pulsed discharge of the EESD with alternating discharge and recovery periods of time.
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: February 20, 2018
    Assignee: Carver Scientific, Inc.
    Inventors: David Reginald Carver, Sean Claudius Hall, Sean William Reynolds
  • Patent number: 9805869
    Abstract: A solid state electrical energy state storage device includes multiple dielectric layers or an integral heterogeneous dielectric layer. Layers or portions of the heterogeneous layer have permittivity augmented by exposing the dielectric material to electric/magnetic fields during formation of the dielectric before complete solidification. Such exposure results in radicals and/or an ordered matrix. A dielectric for the device may contain a new xylene based polymer formed under atmospheric conditions via reaction with monatomic oxygen and provided an augmented permittivity through exposure of the polymer to a magnetic field and/or an electric field during condensation and solidification on a substrate.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: October 31, 2017
    Assignee: Carver Scientific, Inc.
    Inventors: David R. Carver, Robert G. Carver, Sean W. Reynolds
  • Patent number: 9786442
    Abstract: An energy storage device comprises a capacitor having a dielectric between opposite electrodes and a nonconductive coating between at least one electrode and the dielectric. The nonconductive coating allows for much higher voltages to be employed than in traditional EDLCs, which significantly increases energy stored in the capacitor. Viscosity of the dielectric material may be increased or decreased in a controlled manner, such as in response to an applied external stimulus, to control discharge and storage for extended periods of time.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: October 10, 2017
    Assignee: Carver Scientific, Inc.
    Inventors: David Carver, Robert Carver, Sean Reynolds, Noah Davis, Sean Hall
  • Patent number: 9679630
    Abstract: Embodiments of an electroentropic memory device comprising an array of electroentropic storage devices (EESDs) are disclosed, as well as methods of making and using the electroentropic memory device. The memory device includes a plurality of address lines arranged in rows to select a row of the EESDs and a plurality of data lines arranged in columns to select a column of the EESDs, wherein each EESD is coupled in series between an address line connected to one side of the EESD and a data line connected to an opposing side of the EESD. The memory device may have a stacked architecture with multiple layers of address lines, data lines, and EESDs. The disclosed electroentropic memory devices are operable in ROM and RAM modes. EESDs in the disclosed electroentropic memory devices may include from 2-4096 logic states and/or have a density from 0.001 kb/cm3 to 1024 TB/cm3.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: June 13, 2017
    Assignee: Carver Scientific, Inc.
    Inventors: David Reginald Carver, Sean Claudius Hall, Chase Koby Andrepont, Sean William Reynolds, Jaime Hayes Gibbs, Bradford Wesley Fulfer
  • Publication number: 20170133077
    Abstract: Embodiments of an electroentropic memory device comprising an array of electroentropic storage devices (EESDs) are disclosed, as well as methods of making and using the electroentropic memory device. The memory device includes a plurality of address lines arranged in rows to select a row of the EESDs and a plurality of data lines arranged in columns to select a column of the EESDs, wherein each EESD is coupled in series between an address line connected to one side of the EESD and a data line connected to an opposing side of the EESD. The memory device may have a stacked architecture with multiple layers of address lines, data lines, and EESDs. The disclosed electroentropic memory devices are operable in ROM and RAM modes. EESDs in the disclosed electroentropic memory devices may include from 2-4096 logic states and/or have a density from 0.001 kb/cm3 to 1024 TB/cm3.
    Type: Application
    Filed: November 4, 2016
    Publication date: May 11, 2017
    Applicant: Carver Scientific, Inc.
    Inventors: David Reginald Carver, Sean Claudius Hall, Chase Koby Andrepont, Sean William Reynolds, Jaime Hayes Gibbs, Bradford Wesley Fulfer
  • Patent number: 9531198
    Abstract: A method is provided for making a high permittivity dielectric material for use in capacitors. Several high permittivity materials in an organic nonconductive media with enhanced properties and methods for making the same are disclosed. A general method for the formation of thin films of some particular dielectric material is disclosed, wherein the use of organic polymers, shellac, silicone oil, and/or zein formulations are utilized to produce low conductivity dielectric coatings. Additionally, a method whereby the formation of certain transition metal salts as salt or oxide matrices is demonstrated at low temperatures utilizing mild reducing agents. Further, a circuit structure and associated method of operation for the recovery and regeneration of the leakage current from the long-term storage capacitors is provided in order to enhance the manufacturing yield and utility performance of such devices.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: December 27, 2016
    Assignee: Carver Scientific, Inc.
    Inventor: David Reginald Carver
  • Publication number: 20160064153
    Abstract: An energy storage device comprises a capacitor having a dielectric between opposite electrodes and a nonconductive coating between at least one electrode and the dielectric. The nonconductive coating allows for much higher voltages to be employed than in traditional EDLCs, which significantly increases energy stored in the capacitor. Viscosity of the dielectric material may be increased or decreased in a controlled manner, such as in response to an applied external stimulus, to control discharge and storage for extended periods of time.
    Type: Application
    Filed: April 4, 2014
    Publication date: March 3, 2016
    Applicant: CARVER SCIENTIFIC, INC.
    Inventors: David Carver, Robert Carver, Sean Reynolds, Noah Davis, Sean Hall
  • Patent number: 9214280
    Abstract: Methods are disclosed for creating extremely high permittivity dielectric materials for use in capacitors and energy storage devices. High permittivity materials suspended in an organic non-conductive media matrix with enhanced properties and methods for making the same are disclosed. Organic polymers, shellac, silicone oil, and/or zein formulations are utilized to produce thin film low conductivity dielectric coatings. Transition metal salts as salt or oxide matrices are formed at low temperatures utilizing mild reducing agents.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: December 15, 2015
    Assignee: Carver Scientific, Inc.
    Inventors: David R. Carver, Robert G. Carver
  • Patent number: 9214281
    Abstract: Methods are disclosed for creating extremely high permittivity dielectric materials for use in capacitors and energy storage devices. High permittivity materials suspended in an organic non-conductive media matrix with enhanced properties and methods for making the same are disclosed. Organic polymers, shellac, silicone oil, and/or zein formulations are utilized to produce thin film low conductivity dielectric coatings. Transition metal salts as salt or oxide matrices are formed at low temperatures utilizing mild reducing agents.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: December 15, 2015
    Assignee: Carver Scientific, Inc.
    Inventors: David R. Carver, Robert G. Carver
  • Publication number: 20150206658
    Abstract: A method is provided for making a high permittivity dielectric material for use in capacitors. Several high permittivity materials in an organic nonconductive media with enhanced properties and methods for making the same are disclosed. A general method for the formation of thin films of some particular dielectric material is disclosed, wherein organic polymers are utilized to produce low conductivity dielectric coatings. Additionally, a method whereby the formation of certain transition metal salts as salt or oxide matrices is demonstrated at low temperatures utilizing mild reducing agents. Further, a circuit structure and associated method of operation for the recovery and regeneration of the leakage current from the long-term storage capacitors is provided in order to enhance the manufacturing yield and utility performance of such devices.
    Type: Application
    Filed: March 25, 2015
    Publication date: July 23, 2015
    Applicant: CARVER SCIENTIFIC, INC.
    Inventor: David Reginald Carver
  • Publication number: 20150206659
    Abstract: A method is provided for making a high permittivity dielectric material for use in capacitors. Several high permittivity materials in an organic nonconductive media with enhanced properties and methods for making the same are disclosed. A general method for the formation of thin films of some particular dielectric material is disclosed, wherein organic polymers are utilized to produce low conductivity dielectric coatings. Additionally, a method whereby the formation of certain transition metal salts as salt or oxide matrices is demonstrated at low temperatures utilizing mild reducing agents. Further, a circuit structure and associated method of operation for the recovery and regeneration of the leakage current from the long-term storage capacitors is provided in order to enhance the manufacturing yield and utility performance of such devices.
    Type: Application
    Filed: March 25, 2015
    Publication date: July 23, 2015
    Applicant: Carver Scientific, Inc.
    Inventor: David Reginald Carver
  • Patent number: 8940850
    Abstract: An energy storage device comprises a capacitor having a dielectric between opposite electrodes and a nonconductive coating between at least one electrode and the dielectric. The nonconductive coating allows for much higher voltages to be employed than in traditional EDLCs, which significantly increases energy stored in the capacitor. Viscosity of the dielectric material may be increased or decreased in a controlled manner, such as in response to an applied external stimulus, to control discharge and storage for extended periods of time.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: January 27, 2015
    Assignee: Carver Scientific, Inc.
    Inventors: David R. Carver, Robert G. Carver, Sean W. Reynolds, Sean Claudius Hall, Noah Anthony Davis
  • Publication number: 20140295101
    Abstract: A method is provided for making a high permittivity dielectric material for use in capacitors. Several high permittivity materials in an organic nonconductive media with enhanced properties and methods for making the same are disclosed. A general method for the formation of thin films of some particular dielectric material is disclosed, wherein organic polymers are utilized to produce low conductivity dielectric coatings. Additionally, a method whereby the formation of certain transition metal salts as salt or oxide matrices is demonstrated at low temperatures utilizing mild reducing agents. Further, a circuit structure and associated method of operation for the recovery and regeneration of the leakage current from the long-term storage capacitors is provided in order to enhance the manufacturing yield and utility performance of such devices.
    Type: Application
    Filed: March 29, 2013
    Publication date: October 2, 2014
    Applicant: Carver Scientific, Inc.
    Inventor: David Reginald Carver
  • Patent number: D769822
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: October 25, 2016
    Assignee: Carver Scientific, Inc.
    Inventor: Sean W. Reynolds