Patents Assigned to Cataler Corporation
  • Patent number: 11454149
    Abstract: Provided is a particulate filter in which a PM collection rate is stably increased. The particulate filter according to the present invention includes a substrate 10 having a wall flow structure having a porous partition wall 16 that partitions an inlet cell and an outlet cell, and a wash coat layer held on surfaces of internal pores of the partition wall. In addition, average filling rates A, B, and C of the wash coat layer measured for each predetermined pore diameter range in the internal pores satisfy specific relationships. Further, the wash coat layer is formed in a region that occupies 50% or more of a thickness of the partition wall, and an amount of a noble metal catalyst carried by the wash coat layer is 0 g/L or more but 0.2 g/L or less.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: September 27, 2022
    Assignee: CATALER CORPORATION
    Inventors: Ryota Onoe, Ryo Tasaki, Momoko Iwai, Yamato Matsushita
  • Publication number: 20220298942
    Abstract: Provided is an exhaust gas purification catalyst having an improved catalyst performance while securing an OSC in an air-fuel ratio (A/F) rich atmosphere where HC poisoning is likely to occur. The present disclosure relates to an exhaust gas purification catalyst including a substrate and a catalyst coating layer coated on the substrate. The catalyst coating layer has an upstream coat layer formed from an end portion in an upstream side with respect to an exhaust gas flow direction in the exhaust gas purification catalyst and a downstream coat layer formed from an end portion in a downstream side with respect to the exhaust gas flow direction in the exhaust gas purification catalyst. The downstream coat layer includes Rh as a catalytic metal, alumina-ceria-zirconia complex oxide, and alkaline earth metal.
    Type: Application
    Filed: February 28, 2022
    Publication date: September 22, 2022
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Isao CHINZEI, Takumi TOJO, Takahiro NISHIO, Yosuke TODA, Hirotaka ORI, Minoru ITO, Sho HOSHINO
  • Patent number: 11450861
    Abstract: An anode catalyst layer for a fuel cell according to the present invention includes: electrode catalyst particles; a carbon carrier carrying the electrode catalyst particles; water electrolysis catalyst particles; a proton-conductive binder; and a graphitized carbon, wherein the content of graphitized carbon in the anode catalyst layer for a fuel cell is 15-70 volume % with respect to the total volume of the electrode catalyst particles, the carbon carrier, and the graphitized carbon.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: September 20, 2022
    Assignee: CATALER CORPORATION
    Inventors: Akihiro Hori, Yosuke Horiuchi
  • Publication number: 20220285697
    Abstract: To provide an electrocatalyst for fuel cells, which is configured to ensure both the initial performance and durability of fuel cells. An electrocatalyst for fuel cells, wherein the electrocatalyst comprises a carbon support including a mesopore and a catalyst alloy supported on the carbon support, and the catalyst alloy is a catalyst alloy of platinum and a transition metal; wherein the mesopore includes at least one throat; wherein an average effective diameter of the at least one throat is 1.8 nm or more and less than 3.2 nm; and wherein a transition metal ratio of the catalyst alloy supported on a deeper-side region than the at least one throat, is lower than the transition metal ratio of the catalyst alloy supported on a nearer-side region than the at least one throat.
    Type: Application
    Filed: March 3, 2022
    Publication date: September 8, 2022
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Ryo SHIMIZU, Kumiko NOMURA, Tomohiro TAKESHITA, Shu MIYASAKA, Kenji YAMAMOTO
  • Patent number: 11426710
    Abstract: The present disclosure relates to an exhaust gas control catalyst including a base and a catalyst coating layer having a two-layer structure on the base. The catalyst coating layer includes a lower layer on the base, and an upper layer on the lower layer. The upper layer of the catalyst coating layer contains Rh particles in which a mean particle diameter measured by observation using a transmission electron microscope is 1.0 nm or more and 2.0 nm or less and a particle-diameter standard deviation ? is 0.8 nm or less. A length of the upper layer from an end face on a downstream side in an exhaust gas flow direction falls within a range of 70% or more and 100% or less of a total length of the base.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: August 30, 2022
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Takahiro Nishio, Shogo Shirakawa, Masahide Miura, Isao Chinzei, Seiji Nakahigashi, Norimichi Shimano, Hiromi Togashi, Hiroki Nihashi, Mitsuyoshi Okada, Takashi Onozuka, Souta Akiyama, Isao Naito
  • Patent number: 11420189
    Abstract: An exhaust gas purification catalyst having a substrate having a wall flow structure, and a catalyst layer. The catalyst layer has: an A section provided in the interior of the partition wall, along an extension direction X of the partition wall, from an exhaust gas inflow end section; a C section provided in the interior of the partition wall, along the extension direction X of the partition wall, from an exhaust gas outflow end section; and a B section disposed between the A section and the C section in the extension direction X of the partition wall, and provided over the surface of the partition wall on the side in contact with the inlet cell, the interior of the partition wall, and the surface of the partition wall on the side in contact with the outlet cell.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: August 23, 2022
    Assignee: CATALER CORPORATION
    Inventors: Kazunari Sawada, Ryota Onoe, Tetsuhiro Hirao
  • Patent number: 11415039
    Abstract: There is provided a structure including: a substrate including a first and a second ends, and a porous partition wall defining a first and a second cells extending between the first and the second ends; a first catalyst; and a second catalyst. In a first area, the first catalyst is disposed on a first surface of the partition wall, and the partition wall with the first catalyst disposed on the partition wall is impermeable to gas. In a second area, the first catalyst is not provided, the second catalyst is disposed in a region including at least a part inside the partition wall, the part facing the first cell, and the partition wall with the second catalyst disposed in the partition wall is permeable to gas. In a third area, any of the first catalyst or the second catalyst is not provided, and the partition wall is permeable to gas.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: August 16, 2022
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Koji Sugiura, Hiromasa Nishioka, Naoto Miyoshi, Akemi Sato, Masatoshi Ikebe, Ryota Nakashima, Yasutaka Nomura
  • Publication number: 20220250037
    Abstract: An exhaust gas purification catalyst device having a substrate and one or more catalytic noble metals supported on the substrate. The substrate has a plurality of cells partitioned by a porous wall 1 and includes ceria-zirconia compound oxide particles. A specific noble metal that is one of the one or more catalytic noble metals satisfies both the following requirements (1) and (2): (1) the noble metal 50% support depth for the specific noble metal is 30% or less of the distance from the surface of the porous wall 1 to the center of the interior of the porous wall 1, and (2) the noble metal 90% support depth for the specific noble metal is 35% or more of the distance from the surface of the porous wall 1 to the center of the interior of the porous wall 1.
    Type: Application
    Filed: May 11, 2020
    Publication date: August 11, 2022
    Applicants: CATALER CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kana IWATA, Minoru ITOU, Shunsuke OHISHI, Takeru YOSHIDA, Hiromasa SUZUKI, Masaru KAKINOHANA, Satoshi KAMITANI
  • Patent number: 11400436
    Abstract: The present disclosure provides an exhaust gas purification catalyst having an improved low-temperature activity, which comprises a substrate and a catalyst coat layer formed on the substrate, wherein the catalyst coat layer contains Rh fine particles and a promoter comprising a Ce—Zr-based composite oxide and a Zr-based composite oxide not containing cerium oxide, wherein the Rh fine particles have an average particle size measured by a transmission electron microscope observation of 1.0 nm or more to 2.0 nm or less, and a standard deviation ? of the particle size of 0.8 nm or less, and wherein the Rh fine particles are supported on each of the Ce—Zr-based composite oxide and the Zr-based composite oxide not containing cerium oxide.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: August 2, 2022
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Isao Chinzei, Seiji Nakahigashi, Shogo Shirakawa, Hiromasa Suzuki, Masahide Miura, Takahiro Nishio, Norimichi Shimano, Hiroki Nihashi, Hiromi Togashi, Mitsuyoshi Okada, Takashi Onozuka, Souta Akiyama, Isao Naito
  • Publication number: 20220212171
    Abstract: An exhaust gas purification catalytic device includes: a substrate; at least one type of noble-metal catalyst that is supported on the substrate; and a coating layer on the surface of the substrate. The substrate includes a plurality of cells which are demarcated by porous walls. The substrate and the coating layer each include ceria-zirconia composite oxide particles.
    Type: Application
    Filed: May 11, 2020
    Publication date: July 7, 2022
    Applicants: CATALER CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kana IWATA, Minoru ITOU, Shunsuke OHISHI, Takeru YOSHIDA, Masaru KAKINOHANA, Satoshi KAMITANI, Hiromasa SUZUKI
  • Publication number: 20220203345
    Abstract: An ammonia oxidation catalyst device, including a substrate, a first catalyst coat layer and a second catalyst coat layer, wherein: the first catalyst coat layer includes inorganic oxide particles and a catalytic noble metal supported on the inorganic oxide particles; the second catalyst coat layer includes an NOx selective reduction catalyst and a proton zeolite H-Zeolite; the first catalyst coat layer is present on the substrate; and the second catalyst coat layer is present on the first catalyst coat layer.
    Type: Application
    Filed: April 30, 2020
    Publication date: June 30, 2022
    Applicant: CATALER CORPORATION
    Inventor: Yoshinori YAMASHITA
  • Patent number: 11364489
    Abstract: An exhaust gas purifying catalyst includes: a wall-flow structure substrate including an inlet cell, an outlet cell, and a porous partition; a first catalyst layer formed inside the partition such that a thickness of the first catalyst layer is between 40% and 60%, inclusive, of an overall thickness Tw of the partition; and a second catalyst layer formed inside the partition such that the second catalyst layer extends across an entire region of the partition in a thickness direction thereof.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: June 21, 2022
    Assignees: CATALER CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Haruka Makino, Yasutaka Nomura, Satoru Inoda, Kenji Nakajima, Naoto Miyoshi, Takeru Yoshida, Akemi Sato
  • Publication number: 20220184591
    Abstract: A particulate filter includes a base material having a wall-flow structure including porous partition walls partitioning inlet and outlet cells, and wash-coating layers held inside partition walls. The wash-coating layers include inlet layers each formed from vicinity of an end portion at exhaust gas inflow side to have predetermined length and thickness and outlet layers each formed from vicinity of end portion at exhaust gas outflow side to have a predetermined length and thickness. The inlet and the outlet layers partially overlap with each other. Inlet layers of particulate filter contain substantially no noble metal catalyst, and outlet layers contain noble metal catalyst. Accordingly, PM collection performance can be easily enhanced in inlet region, and high gas distributability (pressure loss suppression performance) can be maintained in outlet region.
    Type: Application
    Filed: June 1, 2020
    Publication date: June 16, 2022
    Applicant: CATALER CORPORATION
    Inventors: Ryota ONOE, Ryo TASAKI, Momoko IWAI, Yamato MATSUSHITA
  • Publication number: 20220176352
    Abstract: An exhaust gas purification catalyst device having a substrate, a first catalyst coating layer on the substrate, and a second catalyst coating layer on the first catalyst coating layer. The first catalyst coating layer includes inorganic oxide particles, palladium carried on the inorganic oxide particles, and a barium compound. The second catalyst coating layer includes alumina particles and rhodium carried by the alumina particles. The ratio (MBa/MRh) between the mass (MBa) of barium in the first catalyst coating layer and the mass (MRh) of rhodium in the second catalyst coating layer is 5.0-60.0 inclusive.
    Type: Application
    Filed: March 3, 2020
    Publication date: June 9, 2022
    Applicant: CATALER CORPORATION
    Inventors: Tatsuya OHASHI, Kohei TAKASAKI
  • Patent number: 11352924
    Abstract: An exhaust gas purification catalyst device has catalyst coating layers, which extend from the upstream side to the downstream side of the exhaust gas flow. The catalyst coating layers each have at least three zones present in order from the upstream side to the downstream side of the exhaust gas flow, and each of these at least three zones is an oxidation catalyst zone or a reduction catalyst zone. In the uppermost layer of an oxidation catalyst zone, the total number of atoms of platinum and palladium is greater than the number of atoms of rhodium; in the upper most layer of a reduction catalyst zone, the number of atoms of rhodium is greater than the total number of atoms of platinum and palladium. The oxidation catalyst zones and the reduction catalyst zones alternate at least twice in the exhaust gas flow direction.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: June 7, 2022
    Assignee: CATALER CORPORATION
    Inventors: Chihiro Kasuya, Yuji Yabuzaki, Masaaki Kawai, Mitsuyoshi Okada
  • Publication number: 20220152593
    Abstract: This exhaust gas cleaning catalytic device includes a base material and a first catalyst coat layer on the base material. The first catalyst coat layer has a pre-stage section on an exhaust gas flow upstream side, and a post-stage section on an exhaust gas flow downstream side. The first catalyst coat layer pre-stage section and post-stage section each contain inorganic oxide particles and rhodium supported by the inorganic oxide particles, while at least some of the inorganic oxide particles contain ceria. The ceria amount per unit length of the first catalyst coat layer post-stage section is larger than the ceria amount per unit length of the first catalyst coat layer pre-stage section. The first catalyst coat layer pre-stage section is disposed in such a manner that the end portion on the exhaust gas flow upstream side thereof is in direct contact with the exhaust gas flow.
    Type: Application
    Filed: March 23, 2020
    Publication date: May 19, 2022
    Applicant: CATALER CORPORATION
    Inventors: Tomohiro CHIBA, Kyosuke MURAKAMI, Kenichi TAKI, Shunsuke HAGA
  • Publication number: 20220134313
    Abstract: A supported catalyst particles include oxide carrier particles and noble metal particles supported on the oxide carrier particles, wherein the mass of the noble metal particles is less than or equal to 5 mass % based on the mass of the oxide carrier particles, and the average particle size of the noble metal particles measured by transmission electron microscopy is 1.0-2.0 nm, with the standard deviation ? less than or equal to 0.8 nm.
    Type: Application
    Filed: February 12, 2020
    Publication date: May 5, 2022
    Applicants: CATALER CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroki NIHASHI, Shogo KAWAMURA, Tomomasa AIKAWA, Isao NAITO, Shogo SHIRAKAWA, Masahide MIURA, Nobuyuki TAKAGI, Norimichi SHIMANO
  • Patent number: 11311859
    Abstract: The exhaust gas purification catalyst disclosed here is an exhaust gas purification catalyst disposed in the exhaust pipe of an internal combustion engine to purify nitrogen oxides contained in exhaust gas discharged from the internal combustion engine, provided with a silver alumina catalyst comprising at least alumina as a catalyst and silver supported on this alumina, wherein, in the silver alumina catalyst, the ratio of the peak intensity at a wave number of 1595 cm?1 to the peak intensity at a wave number of 1613 cm?1 by the pyridine IR method is at least 0.3, and the carried amount of the silver is 1.0 wt % to 6.0 wt % given 100 wt % as the total amount of the silver alumina catalyst.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: April 26, 2022
    Assignee: Cataler Corporation
    Inventors: Keigo Hori, Norihiko Aono, Daisuke Oki, Yuya Kawano
  • Publication number: 20220118428
    Abstract: Provided is an exhaust gas purification device that allows improving an exhaust gas purification performance. An exhaust gas purification device of the present disclosure includes a substrate and a catalyst layer disposed on the substrate. The catalyst layer contains a porous carrier, a catalytic metal that is supported by the porous carrier and belongs to platinum group, an alkaline earth metal supported by the porous carrier, and an alkaline earth metal not supported by the porous carrier. At least a part of the alkaline earth metal supported by the porous carrier is supported inside the porous carrier.
    Type: Application
    Filed: October 7, 2021
    Publication date: April 21, 2022
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Isao Chinzei, Seiji NAKAHIGASHI, Takumi TOJO, Masahide MIURA, Noboyuki TAKAGI, Yoshiteru YAZAWA, Sho HOSHINO, Minoru ITO, Naoto FUJITA, Tomomasa AIKAWA
  • Publication number: 20220106900
    Abstract: An exhaust gas purification device includes a substrate including an upstream end and a downstream end, the substrate having a length Ls between the upstream end and the downstream end; a first catalyst layer containing first catalyst particles, extending across a first region, and being in contact with the substrate, the first region extending between the upstream end and a first position, the first position being at a first distance La from the upstream end toward the downstream end; and a second catalyst layer containing second catalyst particles, extending across a second region, and being in contact with the substrate, the second region extending between the downstream end and a second position, the second position being at a second distance Lb from the downstream end toward the upstream end. The first catalyst layer has an inner surface defining macropores.
    Type: Application
    Filed: September 28, 2021
    Publication date: April 7, 2022
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Isao CHINZEI, Takumi TOJO, Masahide MIURA, Nobusuke KABASHIMA, Minoru ITO, Naoto FUJITA