Patents Assigned to Catalytica Energy Systems, Inc.
  • Patent number: 7181906
    Abstract: The invention provides devices and methods for generating H2 and CO in an O2 containing gas stream. The invention also provides devices and methods for removal of NOX from an O2 containing gas stream, particularly the oxygen-rich exhaust stream from a lean-burning engine, such as a diesel engine. The invention includes a fuel processor that efficiently converts added hydrocarbon fuel to a reducing mixture of H2 and CO. The added fuel may be a portion of the onboard fuel on a vehicle. The H2 and CO are incorporated into the exhaust stream and reacted over a selective lean NOX catalyst to convert NOX to N2. thereby providing an efficient means of NOX emission control.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: February 27, 2007
    Assignee: Catalytica Energy Systems, Inc.
    Inventors: Ralph A. Dalla Betta, Joel Cizeron, David R. Sheridan
  • Patent number: 7165393
    Abstract: The present invention provides systems and methods to improve the performance and emission control of internal combustion engines equipped with nitrogen oxides storage-reduction (“NSR”) emission control systems. The system generally includes a NSR catalyst, a fuel processor located upstream of the NSR catalyst, and at least one fuel injection port. The fuel processor converts a fuel into a reducing gas mixture comprising CO and H2. The reducing gas mixture is then fed into the NSR catalyst, where it regenerates the NSR adsorbent, reduces the NOx to nitrogen, and optionally periodically desulfates the NSR catalyst. The fuel processor generally includes one or more catalysts, which facilitate reactions such as combustion, partial oxidation, and/or reforming and help consume excess oxygen present in an engine exhaust stream. The methods of the present invention provide for NSR catalyst adsorbent regeneration. Control strategies are provided to control the system and methods of the invention.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: January 23, 2007
    Assignee: Catalytica Energy Systems, Inc.
    Inventors: Ralph Dalla Betta, Joel Cizeron
  • Publication number: 20060230748
    Abstract: The present invention provides systems and methods to improve the performance and emission control of internal combustion engines equipped with nitrogen oxides storage-reduction (“NSR”) emission control systems. The system generally includes a NSR catalyst, a fuel processor located upstream of the NSR catalyst, and at least one fuel injection port. The fuel processor converts a fuel into a reducing gas mixture comprising CO and H2. The reducing gas mixture is then fed into the NSR catalyst, where it regenerates the NSR adsorbent, reduces the NOx to nitrogen, and optionally periodically desulfates the NSR catalyst. The fuel processor generally includes one or more catalysts, which facilitate reactions such as combustion, partial oxidation, and/or reforming and help consume excess oxygen present in an engine exhaust stream. The methods of the present invention provide for NSR catalyst adsorbent regeneration using pulsed fuel flow. Control strategies are also provided.
    Type: Application
    Filed: June 9, 2006
    Publication date: October 19, 2006
    Applicant: Catalytica Energy Systems, Inc.
    Inventors: Ralph Dalla Betta, Joel Cizeron
  • Patent number: 7121097
    Abstract: A control system for a catalytic combustion system on a gas turbine includes a flame preburner, a fuel injector positioned downstream of the preburner and a catalyst positioned downstream of the fuel injector. In such systems, a portion of the fuel combusts within the catalyst itself and the remainder of the fuel combusts in a homogeneous combustion process wave downstream of the catalyst. A sensor in communication with the control system monitors the homogeneous combustion process wave and adjusts the gas temperature at the catalyst inlet to a preferred value based on a predetermined schedule that relates the catalyst inlet gas temperature to operating fundamentals such as adiabatic combustion temperature or the gas turbine's exhaust gas temperature.
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: October 17, 2006
    Assignee: Catalytica Energy Systems, Inc.
    Inventors: David K. Yee, Marco A. Velasco, Sarento G. Nickolas, Ralph A. Dalla Betta
  • Patent number: 7093445
    Abstract: Disclosed is a unique fuel and air premixing system for a gas turbine catalytic combustion system. The mixer utilizes a multi-channel counter-rotating swirler with aerodynamically shaped fuel pegs located upstream of the swirler. The premixing system provides the downstream catalyst with a fuel-air mixture sufficiently uniform for proper catalyst operation and wide operating limits. Features have been incorporated in the system to make it resistant to flameholding.
    Type: Grant
    Filed: January 23, 2003
    Date of Patent: August 22, 2006
    Assignee: Catalytica Energy Systems, Inc.
    Inventors: Robert Anthony Corr, II, Tim Caron, John Barnes
  • Patent number: 7082753
    Abstract: The present invention provides systems and methods to improve the performance and emission control of internal combustion engines equipped with nitrogen oxides storage-reduction (“NSR”) emission control systems. The system generally includes a NSR catalyst, a fuel processor located upstream of the NSR catalyst, and at least one fuel injection port. The fuel processor converts a fuel into a reducing gas mixture comprising CO and H2. The reducing gas mixture is then fed into the NSR catalyst, where it regenerates the NSR adsorbent, reduces the NOx to nitrogen, and optionally periodically desulfates the NSR catalyst. The fuel processor generally includes one or more catalysts, which facilitate reactions such as combustion, partial oxidation, and/or reforming and help consume excess oxygen present in an engine exhaust stream. The methods of the present invention provide for NSR catalyst adsorbent regeneration using pulsed fuel flow. Control strategies are also provided.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: August 1, 2006
    Assignee: Catalytica Energy Systems, Inc.
    Inventors: Ralph Dalla Betta, Joel Cizeron
  • Publication number: 20060016195
    Abstract: A bypass air injection scheme for a combustor of a gas turbine. Combustor includes a body with an inner liner and a casing enclosing the body with a passageway defined therebetween. A predetermined amount of the compressor discharge air passing through the passageway is extracted through a manifold. A conduit feeds the extracted air into an injection manifold having a plurality of injection tubes for injecting the extracted air into the combustor bypassing the reactor. The injection tubes and the injection manifold are disposed in a substantially common radial plane.
    Type: Application
    Filed: June 8, 2005
    Publication date: January 26, 2006
    Applicant: Catalytica Energy Systems, Inc.
    Inventors: Ralph Dalla Betta, Kare Lundberg, Timothy Caron, Suresh Vilayanur
  • Patent number: 6796129
    Abstract: The present additional control strategy has been developed to allow the gas turbine to operate at lower load or at other conditions where the total fuel required by the gas turbine is not optimum for full combustion of the fuel. The present invention manages air that bypasses the catalytic combustor and air that bleeds off of the compressor discharge. The bypass system changes the fuel air ratio of the catalytic combustor without affecting the overall gas turbine power output. The bleed system also changes the fuel air ratio of the catalytic combustor but at the cost of reducing the overall gas turbine efficiency. The key advantage of a catalytic combustor with a bypass and bleed system and the inventive control strategy is that it can maintain the catalyst at optimum low emissions operating conditions over a wider load range than a catalytic combustor without such a system.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: September 28, 2004
    Assignee: Catalytica Energy Systems, Inc.
    Inventors: David K. Yee, Robert Anthony Corr, II, Sarento George Nickolas
  • Patent number: 6718772
    Abstract: Methods and apparatus, both devices and systems, for control of Zeldovich (thermal) NOx production in catalytic combustion systems during combustion of liquid or gaseous fuels in the post catalytic sections of gas turbines by reducing combustion residence time in the HC zone through control of the HC Wave, principally by adjusting the catalyst inlet temperature. As the fuel/air mixture inlet temperature (to the catalyst) is reduced, the HC Wave moves downstream (longer ignition delay time), shortens the residence time at high temperature, thereby reducing thermal NOx production. The countervailing increase in CO production by longer ignition delay times can be limited by selectively locating the HC Wave so that thermal NOx is reduced while power output and low CO production is maintained. NOx is reduced to on the order of <3 ppm, and preferably <2 ppm, while CO is maintained <100 ppm, typically <50 ppm, and preferably <5-10 ppm.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: April 13, 2004
    Assignee: Catalytica Energy Systems, Inc.
    Inventors: Ralph A. Dalla Betta, Marco A. Velasco, David K. Yee, Sarento G. Nickolas
  • Patent number: 6698412
    Abstract: Catalyst structure, engine, and fuel injection system are disclosed, in which a catalyst structure is positioned between a fuel injector and a combustion chamber in which most or all combustion occurs. The catalyst structure typically promotes some combustion of the fuel, reforming of fuel to generate hydrogen and other reduced species of fuel molecules, or both. The catalyst structure may instead or additionally promote evaporation of fuel droplets. Benefits include reduced emissions of pollutants.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: March 2, 2004
    Assignee: Catalytica Energy Systems, Inc.
    Inventor: Ralph Dalla Betta
  • Publication number: 20040021235
    Abstract: Disclosed is a unique fuel and air premixing system for a gas turbine catalytic combustion system. The mixer utilizes a multi-channel counter-rotating swirler with aerodynamically shaped fuel pegs located upstream of the swirler. The premixing system provides the downstream catalyst with a fuel-air mixture sufficiently uniform for proper catalyst operation and wide operating limits. Features have been incorporated in the system to make it resistant to flameholding.
    Type: Application
    Filed: January 23, 2003
    Publication date: February 5, 2004
    Applicant: Catalytica Energy Systems, Inc.
    Inventors: Robert Anthony Corr, Tim Caron, John Barnes
  • Patent number: 6521566
    Abstract: The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.
    Type: Grant
    Filed: October 4, 2000
    Date of Patent: February 18, 2003
    Assignee: Catalytica Energy Systems, Inc.
    Inventors: Scott Magno, Ruiping Wang, Eric Derouane