Patents Assigned to Catalytica, Inc.
  • Patent number: 5405260
    Abstract: This invention is a catalyst comprising palladium on a support containing zirconium and a partial combustion process in which the fuel is partially combusted using that catalyst. The choice of catalysts and supports solves a problem dealing with the long term stability of palladium as a partial combustion catalyst. The catalyst structure is stable in operation, has a comparatively low operating temperature, has a low temperature a which oxidation begins, and yet is not susceptible to temperature "runaway". The combustion gas produced by the catalytic process typically is at a temperature below the autocombustive temperature and may be used at that temperature or it may be fed to other combustion stages for further use in a gas turbine, furnace, boiler, or the like.
    Type: Grant
    Filed: July 27, 1993
    Date of Patent: April 11, 1995
    Assignees: Catalytica, Inc., Tanaka Kikinzoku Kogyo K.K.
    Inventors: Ralph A. Della Betta, Kazunori Tsurumi, Toru Shoji, Robert L. Garten
  • Patent number: 5366949
    Abstract: This invention is a catalyst and a process using that catalyst for oxidizing hydrogen bromide to form elemental bromine. The inventive catalyst composition comprises cerium bromide on certain zirconia containing supports. The zirconia support, preferably largely in the baddeleyite phase, stabilizes the cerium bromide catalyst against cerium oxide formation at operating temperatures and gives the catalyst excellent activity at lower temperatures.
    Type: Grant
    Filed: June 4, 1993
    Date of Patent: November 22, 1994
    Assignee: Catalytica, Inc.
    Inventor: Paul F. Schubert
  • Patent number: 5365010
    Abstract: This invention is a process for the regeneration of a catalyst system component comprising certain transition aluminas promoted with a Lewis acid (preferably BF.sub.3) which have been used in the alkylation of isoparaffin with olefins. The process involves the calcination of the catalyst system component to volatilize and to oxidize the reaction product residue adhering to the solid catalyst. The process may include recovery and recycle of the involved Lewis acid.
    Type: Grant
    Filed: June 20, 1991
    Date of Patent: November 15, 1994
    Assignee: Catalytica, Inc.
    Inventors: Pradip Rao, David L. King, Michael D. Cooper, Jerome E. Say
  • Patent number: 5338515
    Abstract: This invention is a process for detecting low concentration levels of sulfur oxides (SO.sub.2) in a flowing gas stream (typically a combustion exhaust gas stream) and a catalytic SO.sub.2 sensor system which may be used in that process.
    Type: Grant
    Filed: August 17, 1990
    Date of Patent: August 16, 1994
    Assignee: Catalytica, Inc.
    Inventors: Ralph A. Dalla Betta, David R. Sheridan
  • Patent number: 5326253
    Abstract: This invention is both a partial combustion process in which the fuel is partially combusted using specific catalysts and catalytic structures and also a catalyst structure for use in the process. The choice of catalysts and supports solves problems in the art dealing with the stability of the overall catalyst structure and ease of catalyst operation. The catalyst structure is stable due to its comparatively low operating temperature, has a low temperature at which catalytic combustion begins, and yet is not susceptible to temperature "runaway". The combustion gas produced by the catalytic process typically is below the autocombustive temperature for the gas mixture; the gas may be used at that temperature, or fed to other combustion stages for ultimate use in a gas turbine, furnace, boiler, or the like.
    Type: Grant
    Filed: November 26, 1990
    Date of Patent: July 5, 1994
    Assignees: Catalytica, Inc., Tanaka Kikinzoku Kogyo K.K.
    Inventors: Ralph A. Dalla Betta, Toru Shoji, Kazunori Tsurumi, Nobuyasu Ezawa
  • Patent number: 5326923
    Abstract: This invention is a process for the regeneration of solid acidic hydrocarbon conversion catalysts, but particularly certain transition aluminas and zeolites promoted with Lewis acids (preferably BF.sub.3) which have been used in the alkylation of isoparaffins with olefins. The process involves the removal of some portion of the reaction product residue adhering to the solid catalyst by contact with a solvent to partially recover the catalyst's initial activity.
    Type: Grant
    Filed: November 22, 1991
    Date of Patent: July 5, 1994
    Assignee: Catalytica, Inc.
    Inventors: Michael D. Cooper, Pradip Rao, David L. King, Ronald R. Lopez
  • Patent number: 5314828
    Abstract: This invention is a process for detecting low levels of nitrogen oxides (NO.sub.x) in a flowing gas stream (typically an exhaust gas stream) and a catalytic NO.sub.x sensor which may be used in that process.
    Type: Grant
    Filed: June 12, 1990
    Date of Patent: May 24, 1994
    Assignee: Catalytica, Inc.
    Inventors: Ralph A. Dalla Betta, David R. Sheridan, Daniel L. Reed
  • Patent number: 5308457
    Abstract: This invention is a device and a process for controlling the emission of volatile organic components. The invention is useful on gaseous or vapor-containing streams containing a minor amount of organic material, particularly on fairly dilute streams or those containing only a few parts per million of the organic material. The device is useful in adsorbing organics as might be found emanating from paint spray booths, restaurants, print shops, dry cleaners, furniture manufacturers, and bakeries.The device may be two-stage including an adsorber and a catalytic oxidation reactor or may be of such a configuration that the same bed is used both as the adsorber and catalytic oxidation reactor. In the former configuration, a first stage contains an electrically conductive adsorbent bed, potentially comprising an adsorbent placed on a conductive support of fibers, foil, or other structure. The adsorbent removes the organic from the gaseous stream as that stream passes through.
    Type: Grant
    Filed: April 5, 1991
    Date of Patent: May 3, 1994
    Assignee: Catalytica, Inc.
    Inventors: Ralph A. Dalla Betta, James C. Schlatter, David R. Lane, Diana O. Durieux
  • Patent number: 5306855
    Abstract: This invention is a process for converting lower alkanes into their corresponding esters and optionally into various intermediates (such as alcohols) and other liquid hydrocarbons. The alkanes are oxidatively converted to oxy-esters at high selectivity and conversion and at practical reaction rates using at least catalytic amounts of certain class "B" metals and/or metal ions defined by the Pearson definition as "soft" or "borderline". Desirable catalysts comprise such metals as Pd, Tl, Pt, Hg, and Au. If so desired, the alkyl oxy-esters may be converted to alcohols or other intermediates such as alkyl halides. The oxy-esters, alcohols, and other intermediates may optionally be converted to liquid hydrocarbons such as gasoline.
    Type: Grant
    Filed: November 27, 1991
    Date of Patent: April 26, 1994
    Assignee: Catalytica, Inc.
    Inventors: Roy A. Periana, Douglas J. Taube, Henry Taube, Eric R. Evitt
  • Patent number: 5281128
    Abstract: This invention is a combustion process having a series of stages in which the fuel is stepwise combusted using specific catalysts and catalytic structures and, optionally, a final homogeneous combustion zone. The choice of catalysts and the use of specific structures, including those employing integral heat exchange, results in a catalyst support which is stable due to its comparatively low temperature and yet the product combustion gas is at a temperature suitable for use in a gas turbine, furnace, boiler, or the like, but has low NO.sub.x content.
    Type: Grant
    Filed: November 26, 1990
    Date of Patent: January 25, 1994
    Assignees: Catalytica, Inc., Tanaka Kikinzoku Kogyo K.K.
    Inventors: Ralph A. Dalla Betta, Kazunori Tsurumi, Nobuyasu Ezawa
  • Patent number: 5268523
    Abstract: The invention relates to a process for the separation cf various dialkyl multinuclear aromatic compounds from a feed stream of mixed isomers of those compounds. A shape selective adsorbent is employed resulting in a process that is more efficient than processes based upon prior separation techniques. Of special interest are combination processes involving synthesis steps followed by sorption steps using the same shape selective materials.
    Type: Grant
    Filed: January 23, 1992
    Date of Patent: December 7, 1993
    Assignee: Catalytica, Inc.
    Inventors: Jere D. Fellmann, Paul R. Wentrcek, Peter H. Kilner
  • Patent number: 5259754
    Abstract: This invention is a catalyst comprising palladium on a support containing zirconium and a partial combustion process in which the fuel is partially combusted using that catalyst. The choice of catalysts and supports solves a problem dealing with the long term stability of palladium as a partial combustion catalyst. The catalyst structure is stable in operation, has a comparatively low operating temperature, has a low temperature at which oxidation begins, and yet is not susceptible to temperature "runaway". The combustion gas produced by the catalytic process typically is at a temperature below the autocombustive temperature and may be used at that temperature or it may be fed to other combustion stages for further use in a gas turbine, furnace, boiler, or the like.
    Type: Grant
    Filed: November 26, 1990
    Date of Patent: November 9, 1993
    Assignees: Catalytica, Inc., Tanaka Kikinzoku Kogyo K.K.
    Inventors: Ralph A. Dalla Betta, Kazunori Tsurumi, Toru Shoji, Robert L. Garten
  • Patent number: 5258349
    Abstract: This invention is a graded catalyst comprising palladium and also a partial combustion process in which the fuel is partially combusted using that catalyst. The catalyst utilizes a catalytic support structure suitable for high flow rates of combustible gas mixtures through it. The catalyst is situated on the support so that in the flowing gas stream a leading portion of the support has a higher combustion activity, such as by a higher concentration of catalytic metal, than has the trailing portion. The combination of graded catalyst and support provides a low "light off" temperature for the combustible gas (only a low preheat temperature is needed to cause the combustion reaction to begin) and yet does not cause "hot spots" to occur because of excess activity. The combustion gas produced by the catalytic process may be at a temperature below the adiabatic combustive temperature, may be used at that temperature, or fed to other combustion stages for further use in a gas turbine, furnace, boiler, or the like.
    Type: Grant
    Filed: November 26, 1990
    Date of Patent: November 2, 1993
    Assignees: Catalytica, Inc., Tanaka Kikinzoku Kogyo K.K.
    Inventors: Ralph A. Dalla Betta, Kazunori Tsurumi, Toru Shoji
  • Patent number: 5250489
    Abstract: This invention is a catalyst structure having integral heat exchange surfaces and a method for using the structure in highly exothermic processes, such as a combustion process, while maintaining the catalyst and the structure wall at a temperature below the adiabatic combustion temperature.
    Type: Grant
    Filed: November 26, 1990
    Date of Patent: October 5, 1993
    Assignees: Catalytica, Inc., Tanaka Kikinzoku Kogyo K.K.
    Inventors: Ralph A. Dalla Betta, Fabio H. Ribeiro, Toru Shoji, Kazunori Tsurumi, Nobuyasu Ezawa, Sarento G. Nickolas
  • Patent number: 5250739
    Abstract: This invention is a process for catalytically oxidizing cycloolefins, particularly cyclohexenes, to form a variety of oxygenates. The catalyst used in the process is a covalently bonded iridium-heteropolyanion species. The process uses the catalyst in conjunction with a gaseous oxygen containing gas to form 2-cyclohexen-1-ol and also 2-cyclohexen-1-one.
    Type: Grant
    Filed: March 20, 1992
    Date of Patent: October 5, 1993
    Assignee: Catalytica, Inc.
    Inventors: Noritaka Mizuno, David K. Lyon, Richard G. Finke
  • Patent number: 5248251
    Abstract: This invention is a graded catalyst comprising palladium and also a partial combustion process in which the fuel is partially combusted using that catalyst. The catalyst utilizes a catalytic support structure suitable for high flow rates of combustible gas mixtures through it. The catalyst is situated on the support so that in the flowing gas stream a leading portion of the support has a higher combustion activity, such as by a higher concentration of catalytic metal, than has the trailing portion. The combination of graded catalyst and support provides a low "light off" temperature for the combustible gas (only a low preheat temperature is needed to cause the combustion reaction to begin) and yet does not cause "hot spots" to occur because of excess activity. The combustion gas produced by the catalytic process may be at a temperature below the adiabatic combustive temperature, may be used at that temperature, or fed to other combustion stages for further use in a gas turbine, furnace, boiler, or the like.
    Type: Grant
    Filed: March 24, 1992
    Date of Patent: September 28, 1993
    Assignee: Catalytica, Inc.
    Inventors: Ralph A. Dalla Betta, Kazunori Tsurumi, Toru Shoji
  • Patent number: 5246901
    Abstract: This invention provides novel compositions comprising aryl phosphonic or phosphinic acids substituted with more than one sulfo radical. These novel compounds may be reacted with tetravalent metal ions to provide polymers having an inorganic backbone, which polymers are useful as acid catalysts.
    Type: Grant
    Filed: May 23, 1988
    Date of Patent: September 21, 1993
    Assignee: Catalytica, Inc.
    Inventor: William A. Sanderson
  • Patent number: 5241112
    Abstract: This invention is a process for the production of trialkyl acetic acids, particularly of pivalic acid, from branched olefins, particularly isobutene, and carbon monoxide using a solid acid catalyst and optionally with minor amounts of a Lewis acid such as boron trifluoride.
    Type: Grant
    Filed: April 9, 1991
    Date of Patent: August 31, 1993
    Assignee: Catalytica, Inc.
    Inventors: William A. Sanderson, Michael A. Richard
  • Patent number: 5233095
    Abstract: A process for the manufacture of resorcinol is described which relies upon the intermediacy of a .alpha.,.beta.-unsaturated ketone which can be reacted with a hydroxy moiety-containing compound to obtain a resorcinol precursor which is subsequently converted to resorcinol. In a specific embodiment, 2-cyclohexenone is reacted with water to obtain 3-hydroxycyclohexanone which is dehydrogenated to resorcinol. In another embodiment, 2-cyclohexenone is oxidized to cyclohexane-1,3-dione which is dehydragenated obtain resorcinol.
    Type: Grant
    Filed: July 16, 1991
    Date of Patent: August 3, 1993
    Assignee: Catalytica, Inc.
    Inventors: Jere D. Fellmann, Robert J. Saxton, Paul Tung
  • Patent number: 5233113
    Abstract: This invention is a process for converting lower alkanes into their corresponding esters and optionally into various intermediates (such as methanol) and other liquid hydrocarbons. The alkanes are oxidatively converted to oxy-esters at high selectivity using catalytic amounts of a Group VIII noble metal. If so desired, the alkyl oxy-esters may be converted to alcohols or other intermediates such as alkyl halides. The oxy-esters, alcohols, and other intermediates may optionally be converted to liquid hydrocarbons such as gasoline.
    Type: Grant
    Filed: February 15, 1991
    Date of Patent: August 3, 1993
    Assignee: Catalytica, Inc.
    Inventors: Roy A. Periana, Eric R. Evitt, Henry Taube