Patents Assigned to Catholic University of America
  • Patent number: 9834583
    Abstract: An approach of producing recombinant trimers that mimic native HIV-1 envelope trimers is developed. A recombinant protein forming the recombinant trimers encompasses a recombinant HIV-1 gp140 fused to a tag through a linker at C-terminus of the recombinant HIV-1 gp140. The linker is sufficiently long so that the tag is accessible for binding by a binding molecule bound on a solid matrix. After expressed in a cell, the recombinant protein is secreted into the culture medium and assembles into recombinant trimers therein. The recombinant trimers may be directly purified from the culture medium. Cleaved and uncleaved trimers from different clade viruses are produced.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: December 5, 2017
    Assignee: The Catholic University of America
    Inventors: Venigalla B. Rao, Wadad Alsalmi
  • Patent number: 9827457
    Abstract: The present invention provides compositions and methods for converting hazardous waste glass into safe and usable material. In particular, the present invention provides compositions and methods for producing ceramic products from toxic-metal-containing waste glass, thereby safely encapsulating the metals and other hazardous components within the ceramic products.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: November 28, 2017
    Assignee: The Catholic University of America
    Inventors: Hao Gan, Malabika Chaudhuri, Biprodas Dutta, Ian L. Pegg
  • Patent number: 9701722
    Abstract: Described herein is a soluble HIV-1 retrovirus transmembrane glycoprotein gp41 trimer (Soc-gp41M-Fd) containing a partial ectodomain and the cytoplasmic domain, that is fused to the small outer capsid (Soc) protein of bacteriophage T4 and the Foldon domain of the bacteriophage T4 fibritin (Fd). The gp41 trimer that has a prehairpin structure could be utilized to understand the mechanism of viral entry and as a candidate for development of HIV-1 vaccines, diagnostics and therapeutics. Other secondary embodiments of the gp41 proteins containing different modifications are also disclosed. According to one embodiment, the gp41 trimer is further attached to a cell penetration peptide (CPP). Methods of producing gp41 trimers are also disclosed.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: July 11, 2017
    Assignee: The Catholic University of America
    Inventors: Venigalla B. Rao, Guofen Gao
  • Patent number: 9580477
    Abstract: An approach of producing recombinant trimers that mimic native HIV-1 envelope trimers is developed. A recombinant protein forming the recombinant trimers encompasses a recombinant HIV-1 gp140 fused to a tag through a linker at C-terminus of the recombinant HIV-1 gp140. The linker is sufficiently long so that the tag is accessible for binding by a binding molecule bound on a solid matrix. After expressed in a cell, the recombinant protein is secreted into the culture medium and assembles into recombinant trimers therein. The recombinant trimers may be directly purified from the culture medium. Cleaved and uncleaved trimers from different clade viruses are produced.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: February 28, 2017
    Assignee: The Catholic University of America
    Inventors: Venigalla B. Rao, Wadad Alsalmi
  • Patent number: 9523101
    Abstract: Complex viruses are assembled from simple protein subunits by sequential and irreversible assembly. During genome packaging in bacteriophages, a powerful molecular motor assembles at the special portal vertex of an empty prohead to initiate packaging. An aspect of the invention relates to the phage T4 packaging machine being highly promiscuous, translocating DNA into finished phage heads as well as into proheads. Single motors can force exogenous DNA into phage heads at the same rate as into proheads and phage heads undergo repeated initiations, packaging multiple DNA molecules into the same head. This shows that the phage DNA packaging machine has unusual conformational plasticity, powering DNA into an apparently passive capsid receptacle, including the highly stable virus shell, until it is full. These features allow for the design of a novel class of nanocapsid delivery vehicles.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: December 20, 2016
    Assignee: The Catholic University of America
    Inventor: Venigalla B. Rao
  • Patent number: 9365867
    Abstract: Complex viruses are assembled from simple protein subunits by sequential and irreversible assembly. During genome packaging in bacteriophages, a powerful molecular motor assembles at the special portal vertex of an empty prohead to initiate packaging. An aspect of the invention relates to the phage T4 packaging machine being highly promiscuous, translocating DNA into finished phage heads as well as into proheads. Single motors can force exogenous DNA into phage heads at the same rate as into proheads and phage heads undergo repeated initiations, packaging multiple DNA molecules into the same head. This shows that the phage DNA packaging machine has unusual conformational plasticity, powering DNA into an apparently passive capsid receptacle, including the highly stable virus shell, until it is full. These features allow for the design of a novel class of nanocapsid delivery vehicles.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: June 14, 2016
    Assignee: The Catholic University of America
    Inventor: Venigalla B. Rao
  • Publication number: 20160152521
    Abstract: A geopolymer composite binder is provided herein, the composite binder including (i) at least one fly ash material having less than or equal to 15 wt % of calcium oxide; (ii) at least one gelation enhancer; and (iii) at least one hardening enhancer having a different composition from a composition of the at least one fly ash material.
    Type: Application
    Filed: December 7, 2015
    Publication date: June 2, 2016
    Applicant: The Catholic University of America
    Inventors: Weiliang Gong, Werner Lutze, Ian Pegg
  • Patent number: 9328149
    Abstract: Techniques from two basic approaches, structure-based immunogen design and phage T4 nanoparticle delivery, are developed to construct new plague vaccines. The NH2-terminal ?-strand of F1 of Yersinia pestis is transplanted to the COOH-terminus of F1 of Yersinia pestis and the NH2-terminus sequence flanking the ?-strand of F1 of Yersinia pestis is duplicated to eliminate polymerization but to retain the T cell epitopes. The mutated F1 is fused to the V antigen of Yersinia pestis to thereby form a fusion protein F1mut-V mutant, which produces a completely soluble monomer. The fusion protein F1mut-V is then arrayed on phage T4 nanoparticles via a small outer capsid protein, Soc, from a T4 phage or a T4-related phage. Both the soluble and T4 decorated F1mut-V provided approximately 100% protection to mice and rats against pneumonic plague evoked by high doses of Yersinia pestis CO92.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: May 3, 2016
    Assignee: The Catholic University of America
    Inventors: Venigalla B. Rao, Pan Tao
  • Patent number: 9328145
    Abstract: Described herein is a soluble HIV-1 retrovirus transmembrane glycoprotein gp41 trimer (Soc-gp41M-Fd) containing a partial ectodomain and the cytoplasmic domain, that is fused to the small outer capsid (Soc) protein of bacteriophage T4 and the Foldon domain of the bacteriophage T4 fibritin (Fd). The gp41 trimer that has a prehairpin structure could be utilized to understand the mechanism of viral entry and as a candidate for development of HIV-1 vaccines, diagnostics and therapeutics. Other secondary embodiments of the gp41 proteins containing different modifications are also disclosed. According to one embodiment, the gp41 trimer is further attached to a cell penetration peptide (CPP). Methods of producing gp41 trimers are also disclosed.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: May 3, 2016
    Assignee: The Catholic University of America
    Inventors: Venigalla B. Rao, Guofen Gao
  • Patent number: 9187765
    Abstract: Described is T4 DNA packaging machine comprising: one or more DNA molecules packaged in a head of the T4 DNA packaging machine, one or more Hoc-fused proteins displayed on the head of the T4 DNA packaging machine, and one or more Soc-fused proteins displayed on the head of the T4 DNA packaging machine. Also described are methods of making and using such a T4 DNA packaging machine.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: November 17, 2015
    Assignee: The Catholic University of America
    Inventor: Venigalla B. Rao
  • Patent number: 9163262
    Abstract: Described is T4 DNA packaging machine comprising: one or more DNA molecules packaged in a head of the T4 DNA packaging machine, one or more Hoc-fused proteins displayed on the head of the T4 DNA packaging machine, and one or more Soc-fused proteins displayed on the head of the T4 DNA packaging machine. Also described are methods of making and using such a T4 DNA packaging machine.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: October 20, 2015
    Assignee: The Catholic University of America
    Inventor: Venigalla B. Rao
  • Patent number: 9090508
    Abstract: A geopolymer composite ultra high performance concrete (GUHPC), and methods of making the same, are provided herein, the GUHPC comprising: (a) a binder comprising one or more selected from the group consisting of reactive aluminosilicate and reactive alkali-earth aluminosilicate; (b) an alkali activator comprising an aqueous solution of metal hydroxide and metal silicate; and (c) one or more aggregate.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: July 28, 2015
    Assignee: The Catholic University of America
    Inventors: Weiliang Gong, Werner Lutze, Ian Pegg
  • Publication number: 20150190783
    Abstract: Complexing or chelating agents that offer strong, selective bonding with uranium as well as a broad pH range of effectiveness, specifically including the pH range around 8.2, together with the acrylic double bonds required for radiation-induced grafting on polymers to remove uranium from a solution such as seawater. The novel adsorbing species are phosphorus-containing molecules, in particular organic phosphates, phosphonates and phosphoric acids. Organic phosphorus compounds, for example, organic phosphates, phosphonates, and phosphoric acids, are attached to polymer fibers to form fibers, fiber fabrics or membranes that are effective, or show activity, in uranium adsorption.
    Type: Application
    Filed: August 20, 2013
    Publication date: July 9, 2015
    Applicants: UNIVERSITY OF MARYLAND, THE CATHOLIC UNIVERSITY OF AMERICA
    Inventors: Chanel Tissot, Aaron Barkatt, Mohamad I. Al-Sheikhly
  • Publication number: 20140264140
    Abstract: A composite binder comprises: one or more Class F fly ash materials, one or more gelation enhancers, and one or more hardening enhancers, wherein each of the one or more Class F fly ash materials comprises 15 wt. % or less calcium oxide, and wherein the composite binder is a Portland cement-free binder for concrete. Also provided are Geopolymer Composite Cellular Concretes (GCCCs) including the composite binder and methods of making these GCCCs.
    Type: Application
    Filed: February 28, 2014
    Publication date: September 18, 2014
    Applicant: The Catholic University of America
    Inventors: Weiliang GONG, Werner LUTZE, Ian L. PEGG
  • Publication number: 20140256796
    Abstract: Described is T4 DNA packaging machine comprising: one or more DNA molecules packaged in a head of the T4 DNA packaging machine, one or more Hoc-fused proteins displayed on the head of the T4 DNA packaging machine, and one or more Soc-fused proteins displayed on the head of the T4 DNA packaging machine. Also described are methods of making and using such a T4 DNA packaging machine.
    Type: Application
    Filed: December 4, 2013
    Publication date: September 11, 2014
    Applicant: THE CATHOLIC UNIVERSITY OF AMERICA
    Inventor: Venigalla B. RAO
  • Patent number: 8802418
    Abstract: Complex viruses are assembled from simple protein subunits by sequential and irreversible assembly. During genome packaging in bacteriophages, a powerful molecular motor assembles at the special portal vertex of an empty prohead to initiate packaging. An aspect of the invention relates to the phage T4 packaging machine being highly promiscuous, translocating DNA into finished phage heads as well as into proheads. Single motors can force exogenous DNA into phage heads at the same rate as into proheads and phage heads undergo repeated initiations, packaging multiple DNA molecules into the same head. This shows that the phage DNA packaging machine has unusual conformational plasticity, powering DNA into an apparently passive capsid receptacle, including the highly stable virus shell, until it is full. These features allow for the design of a novel class of nanocapsid delivery vehicles.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: August 12, 2014
    Assignee: The Catholic University of America
    Inventor: Venigalla B. Rao
  • Publication number: 20140148586
    Abstract: Described herein is a soluble HIV-1 retrovirus transmembrane glycoprotein gp41 trimer (Soc-gp41M-Fd) containing a partial ectodomain and the cytoplasmic domain, that is fused to the small outer capsid (Soc) protein of bacteriophage T4 and the Foldon domain of the bacteriophage T4 fibritin (Fd). The gp41 trimer that has a prehairpin structure could be utilized to understand the mechanism of viral entry and as a candidate for development of HIV-1 vaccines, diagnostics and therapeutics. Other secondary embodiments of the gp41 proteins containing different modifications are also disclosed. According to one embodiment, the gp41 trimer is further attached to a cell penetration peptide (CPP). Methods of producing gp41 trimers are also disclosed.
    Type: Application
    Filed: November 27, 2013
    Publication date: May 29, 2014
    Applicant: THE CATHOLIC UNIVERSITY OF AMERICA
    Inventors: Venigalla B. RAO, Guofen GAO
  • Patent number: 8685694
    Abstract: Compositions and methods comprising bacteriophages are provided. In particular, the present invention includes novel and customized T4 bacteriophages uniquely designed for effective antigen and foreign particle presentation. The present invention also provides in vitro methods for the making of customized T4 bacteriophages. The compositions and methods of the present invention may be used for effective vaccine delivery systems.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: April 1, 2014
    Assignee: The Catholic University of America
    Inventor: Venigalla Basaveswara Rao
  • Publication number: 20140073830
    Abstract: The present invention provides compositions and methods for converting hazardous waste glass into safe and usable material. In particular, the present invention provides compositions and methods for producing ceramic products from toxic-metal-containing waste glass, thereby safely encapsulating the metals and other hazardous components within the ceramic products.
    Type: Application
    Filed: November 13, 2013
    Publication date: March 13, 2014
    Applicant: The Catholic University of America
    Inventors: Hao Gan, Malabika Chaudhuri, Biprodas Dutta, Ian L. Pegg
  • Publication number: 20130196416
    Abstract: Complex viruses are assembled from simple protein subunits by sequential and irreversible assembly. During genome packaging in bacteriophages, a powerful molecular motor assembles at the special portal vertex of an empty prohead to initiate packaging. An aspect of the invention relates to the phage T4 packaging machine being highly promiscuous, translocating DNA into finished phage heads as well as into proheads. Single motors can force exogenous DNA into phage heads at the same rate as into proheads and phage heads undergo repeated initiations, packaging multiple DNA molecules into the same head. This shows that the phage DNA packaging machine has unusual conformational plasticity, powering DNA into an apparently passive capsid receptacle, including the highly stable virus shell, until it is full. These features allow for the design of a novel class of nanocapsid delivery vehicles.
    Type: Application
    Filed: March 12, 2013
    Publication date: August 1, 2013
    Applicant: THE CATHOLIC UNIVERSITY OF AMERICA
    Inventor: THE CATHOLIC UNIVERSITY OF AMERICA