Abstract: The present invention provides compositions and methods based on genetic polymorphisms that are associated with response to statin treatment, particularly for reducing the risk of cardiovascular disease, especially coronary heart disease (such as myocardial infarction) and stroke. For example, the present invention relates to nucleic acid molecules containing the polymorphisms, variant proteins encoded by these nucleic acid molecules, reagents and kits for detecting the polymorphic nucleic acid molecules and variant proteins, and methods of using the nucleic acid molecules and proteins as well as methods of using reagents and kits for their detection.
Abstract: This invention relates to nucleotide polymorphisms in the human Apo(a) gene and to the use of Apo(a) nucleotide polymorphisms in identifying whether a human subject will respond or not to treatment with acetylsalicylic acid.
Type:
Grant
Filed:
April 3, 2017
Date of Patent:
February 4, 2020
Assignees:
The Brigham and Women's Hospital, Inc., Celera Corporation
Inventors:
Paul M. Ridker, Daniel Chasman, Dov Shiffman
Abstract: The present invention is based on the discovery of genetic polymorphisms that are associated with myocardial infarction. In particular, the present invention relates to nucleic acid molecules containing the polymorphisms, variant proteins encoded by such nucleic acid molecules, reagents for detecting the polymorphic nucleic acid molecules and proteins, and methods of using the nucleic acid and proteins as well as methods of using reagents for their detection.
Abstract: The present invention provides compositions and methods based on genetic polymorphisms that are associated with coronary heart disease (particularly myocardial infarction), aneurysm/dissection, and/or response to drug treatment, particularly statin treatment. For example, the present invention relates to nucleic acid molecules containing the polymorphisms, variant proteins encoded by these nucleic acid molecules, reagents for detecting the polymorphic nucleic acid molecules and variant proteins, and methods of using the nucleic acid molecules and proteins as well as methods of using reagents for their detection.
Type:
Grant
Filed:
May 10, 2016
Date of Patent:
October 8, 2019
Assignee:
Celera Corporation
Inventors:
Olga Iakoubova, James J. Devlin, Carmen Tong, Charles Rowland
Abstract: Methods and compositions are provided for assessing (e.g., diagnosing), treating, and preventing diseases, especially cancer, and particular lung cancer, using lung cancer markers (LCM). Individual LCM and panels comprising multiple LCM are provided for these and other uses. Methods and compositions are also provided for determining or predicting the effectiveness of a treatment or for selecting a treatment using LCM. Methods and compositions are further provided for modulating cell function using LCM. Also provided are compositions that modulate LCM (e.g., antagonists or agonists), such as antibodies, proteins, small molecule compounds, and nucleic acid agents (e.g., RNAi and antisense agents), as well as pharmaceutical compositions thereof. Further provided are methods of screening for agents that modulate LCM, and agents identified by these screening methods.
Type:
Grant
Filed:
November 8, 2016
Date of Patent:
July 2, 2019
Assignee:
Celera Corporation
Inventors:
Charles Birse, Steve Ruben, Marcia Lewis, Mehdi Mesri
Abstract: The present invention provides compositions and methods based on genetic polymorphisms that are associated with autoimmune disease, particularly rheumatoid arthritis. For example, the present invention relates to nucleic acid molecules containing the polymorphisms, variant proteins encoded by these nucleic acid molecules, reagents for detecting the polymorphic nucleic acid molecules and variant proteins, and methods of using the nucleic acid molecules and proteins as well as methods of using reagents for their detection.
Abstract: The present invention is based on the discovery of genetic polymorphisms that are associated with psoriasis and related pathologies. In particular, the present invention relates to nucleic acid molecules containing the polymorphisms, including groups of nucleic acid molecules that may be used as a signature marker set, such as a haplotype, a diplotype, variant proteins encoded by such nucleic acid molecules, reagents for detecting the polymorphic nucleic acid molecules and proteins, and methods of using the nucleic acid and proteins as well as methods of using reagents for their detection.
Type:
Grant
Filed:
December 9, 2015
Date of Patent:
November 20, 2018
Assignee:
Celera Corporation
Inventors:
Yonghong Li, Steven Schrodi, Ann Begovich, Monica Chang
Abstract: The present invention is based on the discovery of genetic polymorphisms that are associated with rheumatoid arthritis. In particular, the present invention relates to nucleic acid molecules containing the polymorphisms, variant proteins encoded by such nucleic acid molecules, reagents for detecting the polymorphic nucleic acid molecules and proteins, and methods of using the nucleic acid and proteins as well as methods of using reagents for their detection.
Type:
Grant
Filed:
June 13, 2016
Date of Patent:
October 30, 2018
Assignee:
Celera Corporation
Inventors:
Ann B. Begovich, Victoria Carlton, Steven J. Schrodi, Heather C. Alexander
Abstract: The present invention is based on the discovery of genetic polymorphisms that are associated with psoriasis and related pathologies. In particular, the present invention relates to nucleic acid molecules containing the polymorphisms, including groups of nucleic acid molecules that may be used as a signature marker set, such as a haplotype, a diplotype, variant proteins encoded by such nucleic acid molecules, reagents for detecting the polymorphic nucleic acid molecules and proteins, and methods of using the nucleic acid and proteins as well as methods of using reagents for their detection.
Type:
Grant
Filed:
May 11, 2016
Date of Patent:
June 26, 2018
Assignee:
Celera Corporation
Inventors:
Ann Begovich, Ellen Beasley, Michele Cargill, Steven Schrodi
Abstract: The present invention is based on the discovery of genetic polymorphisms that are associated with cardiovascular disorders, particularly acute coronary events such as myocardial infarction and stroke, and genetic polymorphisms that are associated with responsiveness of an individual to treatment of cardiovascular disorders with statin. In particular, the present invention relates to nucleic acid molecules containing the polymorphisms, variant proteins encoded by such nucleic acid molecules, reagents for detecting the polymorphic nucleic acid molecules and proteins, and methods of using the nucleic acid and proteins as well as methods of using reagents for their detection.
Type:
Grant
Filed:
May 31, 2016
Date of Patent:
April 3, 2018
Assignee:
Celera Corporation
Inventors:
Olga Iakoubova, James J. Devlin, Zenta Tsuchihashi, Peter Shaw, Lynn Marie Ploughman, Kim E. Zerba, Koustubh Ranade, Todd Kirchgessner
Abstract: The present invention provides a method for diagnosing and detecting diseases associated with colon. The present invention provides one or more proteins or fragments thereof, peptides or nucleic acid molecules differentially expressed in colon diseases (CCAT) and antibodies binds to CCAT. The present invention provides that CCAT is used as targets for screening agents that modulates the CCAT activities. Further the present invention provides methods for treating diseases associated with colon.
Abstract: The present invention provides compositions and methods based on genetic polymorphisms that are associated with autoimmune disease, particularly rheumatoid arthritis. For example, the present invention relates to nucleic acid molecules containing the polymorphisms, variant proteins encoded by these nucleic acid molecules, reagents for detecting the polymorphic nucleic acid molecules and variant proteins, and methods of using the nucleic acid molecules and proteins as well as methods of using reagents for their detection.
Abstract: Methods and compositions for diagnosing and treating diseases, particularly cancer, associated with differential expression of cancer-associated targets (CAT) in disease cells compared to healthy cells are provided. Also provided are antagonists and agonists of CAT, and methods for screening agents that modulate CAT level or activity in vivo or in vitro.
Abstract: The present invention is based on the discovery of genetic polymorphisms that are associated with psoriasis and related pathologies. In particular, the present invention relates to nucleic acid molecules containing the polymorphisms, including groups of nucleic acid molecules that may be used as a signature marker set, such as a haplotype, a diplotype, variant proteins encoded by such nucleic acid molecules, reagents for detecting the polymorphic nucleic acid molecules and proteins, and methods of using the nucleic acid and proteins as well as methods of using reagents for their detection.
Type:
Grant
Filed:
January 26, 2015
Date of Patent:
June 21, 2016
Assignee:
Celera Corporation
Inventors:
Ann Begovich, Ellen Beasley, Michelle Cargill, Steven Schrodi
Abstract: The present invention is based on the discovery of genetic polymorphisms that are associated with liver fibrosis and related pathologies. In particular, the present invention relates to nucleic acid molecules containing the polymorphisms, including groups of nucleic acid molecules that may be used as a signature marker set, variant proteins encoded by such nucleic acid molecules, reagents for detecting the polymorphic nucleic acid molecules and proteins, and methods of using the nucleic acid and proteins as well as methods of using reagents for their detection.
Abstract: Methods and compositions for diagnosing and treating diseases, particularly cancer, associated with differential expression of cancer-associated targets (CAT) in disease cells compared to healthy cells are provided. Also provided are antagonists and agonists of CAT, and methods for screening agents that modulate CAT level or activity in vivo or in vitro.
Abstract: The present invention provides a method for diagnosing and detecting diseases associated with colon. The present invention provides one or more proteins or fragments thereof, peptides or nucleic acid molecules differentially expressed in colon diseases (CCAT) and antibodies binds to CCAT. The present invention provides that CCAT is used as targets for screening agents that modulates the CCAT activities. Further the present invention provides methods for treating diseases associated with colon.
Abstract: The present invention is based on the discovery of genetic polymorphisms that are associated with psoriasis and related pathologies. In particular, the present invention relates to nucleic acid molecules containing the polymorphisms, including groups of nucleic acid molecules that may be used as a signature marker set, such as a haplotype, a diplotype, variant proteins encoded by such nucleic acid molecules, reagents for detecting the polymorphic nucleic acid molecules and proteins, and methods of using the nucleic acid and proteins as well as methods of using reagents for their detection.
Type:
Grant
Filed:
December 12, 2012
Date of Patent:
March 10, 2015
Assignee:
Celera Corporation
Inventors:
Ann Begovich, Ellen Beasley, Michele Cargill, Steven Schrodi
Abstract: A low-voltage, low-energy electrochemical system and method of removing protons and/or producing a base solution comprising hydroxide and carbonate/bicarbonate ions, utilizing carbon dioxide in a cathode compartment that is partitioned into a first cathode electrolyte compartment and a second cathode electrolyte compartment such that liquid flow between the cathode electrolyte compartments is possible, but wherein gaseous communication between the cathode electrolyte compartments is restricted. Carbon dioxide gas in one cathode electrolyte compartment is utilized with the cathode electrolyte in both compartments to produce the base solution with less that 3V applied across the electrodes.
Type:
Grant
Filed:
July 3, 2012
Date of Patent:
November 25, 2014
Assignee:
Celera Corporation
Inventors:
Ryan J. Gilliam, Thomas A. Albrecht, Nikhil Jalani, Nigel Antony Knott, Valentin Decker, Michael Kostowskyj, Bryan Boggs, Alexander Gorer, Kasra Farsad
Abstract: Exemplary embodiments of the invention provide methods and compositions relating to a multi-gene signature, and subsets thereof, for predicting whether an individual with breast cancer will respond to chemotherapy based on expression of the genes in the multi-gene signature, as well as for prognosing risk of breast cancer metastasis.