Patents Assigned to CeLight
  • Patent number: 7801395
    Abstract: An optical device is provided with first and second inputs. A first coupler coupled is coupled to the first input and produces at least a first and second output. A second coupler is coupled to the second input and produces at least a first and second output. A third coupler is coupled to the first output of the first coupler and to the first output of the second coupler. A fourth coupler is coupled to the second output of the first coupler and to the second output of the second coupler. First and second crossing waveguides are provided with an angle selected to minimize crosstalk and losses between the first and second cross waveguides. The first crossing waveguide connects one of the first or second outputs from the first coupler with an input of the fourth coupler. The second crossing waveguide connects one of the first or second outputs from the second coupler with an input of the third coupler. A first phase shifter is coupled to the first and second waveguides.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: September 21, 2010
    Assignee: CeLight, Inc.
    Inventors: Isaac Shpantzer, Aviv Salamon, Arkady Kaplan, Pak Shing Cho, Jacob Khurgin, Yaakov Achiam, Arthur Greenblatt, Geofrey Harston
  • Patent number: 7715720
    Abstract: An optical device is provided with first and second inputs. A first coupler coupled is coupled to the first input and produces at least a first and second output. A second coupler is coupled to the second input and produces at least a first and second output. A third coupler is coupled to the first output of the first coupler and to the first output of the second coupler. A fourth coupler is coupled to the second output of the first coupler and to the second output of the second coupler. First and second crossing waveguides are provided with an angle selected to minimize crosstalk and losses between the first and second cross waveguides. The first crossing waveguide connects one of the first or second outputs from the first coupler with an input of the fourth coupler. The second crossing waveguide connects one of the first or second outputs from the second coupler with an input of the third coupler. A first phase shifter is coupled to the first and second waveguides.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: May 11, 2010
    Assignee: CeLight, Inc.
    Inventors: Isaac Shpantzer, Aviv Salamon, Pak Shing Cho
  • Patent number: 7693428
    Abstract: The present invention discloses a transmitter and receiver for optical communications system, which provide compensation of the optical link nonlinearity. M-PSK modulating is used for data embedding in an optical signal in each WDM channel using orthogonal frequency division multiplexing (OFDM) technique. At the receiver side electrical output signals from a coherent optical receiver are processed digitally with the link nonlinearity compensation. It is followed by the signal conversion into frequency domain and information recovery from each subcarrier of the OFDM signal. At the transmitter side an OFDM encoder provides a correction of I and Q components of a M-PSK modulator driving signal to compensate the link nonlinearity prior to sending the optical signal to the receiver.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: April 6, 2010
    Assignee: CeLight, Inc.
    Inventors: Jacob Khurgin, Isaac Shpantzer
  • Patent number: 7652254
    Abstract: A method and system for nuclear substance revealing using muon detection technique is presented. In some aspects, naturally occurred muons are selected from the flow of charged particles. Muon coordinate and incidence angle measured above and below the interrogated volume can be used for the decision making on the presence of nuclear substance inside the volume. The system is adapted for performing measurements on moving objects such as moving trucks. A combination of the nuclear substance detection system with an explosive sensing system is presented.
    Type: Grant
    Filed: January 25, 2007
    Date of Patent: January 26, 2010
    Assignee: CeLight, Inc.
    Inventors: Isaac Shpantzer, Yaakov Achiam, Nadejda Reingand
  • Patent number: 7646944
    Abstract: A system and method for a structure monitoring and locating a disturbance event is disclosed. The system includes a compact transceiver chip sending optical signals in three optical fibers that encompass the monitored structure appropriately. The fiber arrangement has different density in different parts of the monitored structure, such as, for example, critical places in the structure may have larger number of fiber loops surrounding them. All fibers transmit signals in both directions: from the transceiver to a returning point and back. A set of two detectors registers the returning signals, and a time delay between those signals is calculated, which is indicative of the disturbance event location. Polarization states of the returning signals are controlled by transceiver built-in controllers. The event location is determined with different sensitivity in different parts of the monitored structure depending on the density of fibers in these parts.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: January 12, 2010
    Assignee: CeLight, Inc.
    Inventor: Arkady Kaplan
  • Patent number: 7512338
    Abstract: One embodiment of the invention relates to producing optical pulses for use on a transmission link. A light source is configured to produce an optical signal. A pulse generator is coupled to the light source. The pulse generator is configured to receive, for a first channel, the optical signal and a clock signal. The pulse generator is also configured to modify the optical signal based on the clock signal to produce an optical pulse having a predetermined pulse shape. The clock signal is associated with the predetermined pulse shape. The predetermined pulse shape being based on a transmission characteristic of the transmission link.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: March 31, 2009
    Assignee: CeLight, Inc.
    Inventors: Isaac Shpantzer, Israel Smilanski, Jacob B. Khurgin, Vladimir Grigoryan, Pak Shing Cho, Nadejda Reingand, Guy Levy-Yurista, Guoliang Li
  • Patent number: 7502118
    Abstract: A photo-thermal interferometric spectroscopy system is disclosed that provides information about a chemical at a remote location. A first light source assembly is included that emits a first beam. The first beam has one or more wavelengths that interact with the chemical and change a refractive index of the chemical. A second laser produces a second beam. The second beam interacts with the chemical resulting in a third beam with a phase change that corresponds with the change of the refractive index of the chemical. A detector system is positioned remote from the chemical to receive at least a portion of the third beam. An adaptive optics system at least partially compensates the light beam degradation caused by atmospheric turbulence.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: March 10, 2009
    Assignee: CeLight, Inc.
    Inventor: Isaac Shpantzer
  • Patent number: 7483600
    Abstract: The present invention provides an integrated device and a method of its fabrication and use. Two parts of the device each having an electronic circuit are aligned adjacent to each other with an accuracy of at least 1 micron. An alignment system includes two parts: a first part integrated with the first electronic circuit of the integrated device on the first substrate and a second part integrated with the second electronic circuit of the integrated device on the second substrate. The second part of alignment system includes at least one photodiode. The maximal value of the photodiode current indicates the best alignment of two parts of the integrated device. In one embodiment the integrated device is a coherent optical detector for high speed optical communications and chemical sensing. In another embodiment the integrated optical device is a coherent optical detector operating in two polarization states of light.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: January 27, 2009
    Assignee: CeLight, Inc.
    Inventors: Yaakov Achiam, Isaac Shpantzer, Arthur Greenblatt, Geoffrey Harston, Arkady Kaplan, Pak Shing Cho
  • Patent number: 7470905
    Abstract: A method and system for high Z substance revealing using muon detection technique is presented. Natural muon coordinate and incidence angle are measured above and below the interrogated volume. The data on muons trajectory change caused by the presence of high Z material and the muons time of flight between the upper and lower muon detectors are used for the decision making on the presence of a nuclear substance inside the volume. The system is adapted for performing measurements on moving objects such as moving trucks.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: December 30, 2008
    Assignee: CeLight, Inc.
    Inventors: Jacques Goldberg, Isaac Shpantzer, Yaakov Achiam, Nadejda Reingand
  • Patent number: 7426035
    Abstract: A system and method is proposed for chemicals detection such as explosives and others, which are based on sensing of trace gases associated with the chemical. This sensing includes detection of spectrum and relative concentration of the trace gases followed by the chemical identification based on these data. The sensing is based on photothermal interferometry method modified by implementation of coherent optical detection. This modification essentially improves the device performance by increasing its sensitivity and selectivity. Improved characteristics of the device allow remote sensing of the interrogated chemicals at a distance up to 1000 meters, which is crucial for explosives detection. The coherent optical detection is performed by a coherent receiver based on 90-degrees optical hybrid.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: September 16, 2008
    Assignee: CeLight, Inc.
    Inventor: Isaac Shpantzer
  • Patent number: 7418209
    Abstract: The invention provides, according to its various embodiments, a method for secure communication that involves encoding and transmitting an optical communications signal that is encoded based on a multi-dimensional encoding technique. The multi-dimensional encoding technique includes multiple security layers and varies multiple physical characteristics of a communications signal. The multi-dimensional encoding technique may include at least one or more of encoding a phase of an optical communications signal, encoding a polarization of an optical communications signal, and encoding a frequency of an optical communications signal, or any combination thereof. According to embodiments of the invention, the encoding and/or any decoding of the optical communications signal may be carried out using one or more of an optical phase shift coding, a polarization multiplexing, and a multi-wavelength control. Multi-dimensional encoding and decoding keys are provided.
    Type: Grant
    Filed: June 17, 2003
    Date of Patent: August 26, 2008
    Assignee: CeLight, Inc.
    Inventors: Aviv Salamon, Nadejda Reingand, Isaac Shpantzer, Michael Tseytlin
  • Patent number: 7397979
    Abstract: An optical device is provided with first and second inputs. A first coupler coupled is coupled to the first input and produces at least a first and second output. A second coupler is coupled to the second input and produces at least a first and second output. A third coupler is coupled to the first output of the first coupler and to the first output of the second coupler. A fourth coupler is coupled to the second output of the first coupler and to the second output of the second coupler. First and second crossing waveguides are provided with an angle selected to minimize crosstalk and losses between the first and second cross waveguides. The first crossing waveguide connects one of the first or second outputs from the first coupler with an input of the fourth coupler. The second crossing waveguide connects one of the first or second outputs from the second coupler with an input of the third coupler. A first phase shifter is coupled to the first and second waveguides.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: July 8, 2008
    Assignee: CeLight, Inc.
    Inventors: Isaac Shpantzer, Arkady Kaplan, Aviv Salamon, Yaakov Achiam, Jacob B. Khurgin, Michael Tseytlin, Pak Shing Cho, Arthur Greenblatt, Christopher Kerr, Geoffrey Harston
  • Patent number: 7391969
    Abstract: One embodiment of the invention relates to producing optical pulses for use on a transmission link. A light source is configured to produce an optical signal. A pulse generator is coupled to the light source. The pulse generator is configured to receive, for a first channel, the optical signal and a clock signal. The pulse generator is also configured to modify the optical signal based on the clock signal to produce an optical pulse having a predetermined pulse shape. The clock signal is associated with the predetermined pulse shape. The predetermined pulse shape being based on a transmission characteristic of the transmission link.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: June 24, 2008
    Assignee: CeLight, Inc.
    Inventors: Isaac Shpantzer, Israel Smilanski, Jacob B. Khurgin, Vladimir Grigoryan, Pak Shing Cho, Nadejda Reingand, Guy Levy-Yurista, Guoliang Li
  • Patent number: 7327913
    Abstract: An optical device is provided with first and second inputs. A first coupler coupled is coupled to the first input and produces at least a first and second output. A second coupler is coupled to the second input and produces at least a first and second output. A third coupler is coupled to the first output of the first coupler and to the first output of the second coupler. A fourth coupler is coupled to the second output of the first coupler and to the second output of the second coupler. First and second crossing waveguides are provided with an angle selected to minimize crosstalk and losses between the first and second cross waveguides. The first crossing waveguide connects one of the first or second outputs from the first coupler with an input of the fourth coupler. The second crossing waveguide connects one of the first or second outputs from the second coupler with an input of the third coupler. A first phase shifter is coupled to the first and second waveguides.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: February 5, 2008
    Assignee: Celight, Inc.
    Inventors: Isaac Shpantzer, Arkady Kaplan, Aviv Salamon, Yaakov Achiam, Jacob B. Khurgin, Michael Tseytlin, Pak Shing Cho, Arthur Greenblatt, Christopher Kerr, Geoffrey Harston
  • Patent number: 7315697
    Abstract: A multiple wavelength light source generates an output signal having a comb of accurately spaced apart frequencies with variable free spectral range in the C-band of optical fiber communication. The light source employs an electro-optical modulator (EOM) driven by a signal generator which modulates with EOM with multiple modulation frequencies to widen the output spectrum of signal. The EOM has a crystal provided with a waveguide. The waveguide may be doped with a rare-earth metal to impart gain properties to equalize the intensities of the comb. In one preferred embodiment, Er, Yt or other doping elements provide the gain property to waveguides. The crystal is also provided with periodically poled structure, and this may be engineered so as to form domains of unequal widths to improve the efficiency of modulation. The output signal from the light source may be split and presented to a bank of filters to create a multiple signals, each signal having one of the spaced apart frequencies.
    Type: Grant
    Filed: June 18, 2002
    Date of Patent: January 1, 2008
    Assignee: CeLight, Inc.
    Inventors: Israel Smilanski, Isaac Shpantzer, Jacob B. Khurgin, Nadejda Reingand, Pak Shing Cho, Yaakov Achiam
  • Patent number: 7277178
    Abstract: A photo-thermal, interferometric spectroscopy system is disclosed that provides information about a chemical at a remote location. A first light source assembly is included that emits a first beam. The first beam has one or more wavelengths that interact with the chemical and change a refractive index of the chemical. A second light source produces a second beam. The second beam interacts with the chemical resulting in a third beam with a phase change that corresponds with the change of the refractive index of the chemical. A detector system is positioned remote from the chemical to receive at least a portion of the third beam. The detector system provides information on a phase change in the third beam relative to the second beam that is indicative of at least one of, absorption spectrum and concentration of the chemical.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: October 2, 2007
    Assignee: Celight, Inc.
    Inventors: Isaac Shpantzer, Jacob B. Khurgin, Pak Shing Cho, Yaakov Achiam
  • Patent number: 7272271
    Abstract: An optical device includes, a first Mach-Zehnder modulator that produces a first output, and a second Mach-Zehnder modulator which produces a second output. A splitter couples the first and second Mach-Zehnder modulators. A combiner combines the first and second outputs. A phase shifter is coupled to the first and second Mach-Zehnder modulators. The first Mach-Zehnder modulator, second Mach-Zehnder modulator, splitter, combiner and the phase shifter are each formed as part of a single chip made of electro-optical material. Such two similar optical device integrated together with polarization combiner provide a two-polarization performance.
    Type: Grant
    Filed: July 2, 2003
    Date of Patent: September 18, 2007
    Assignee: Celight, Inc.
    Inventors: Arkady Kaplan, Yaakov Achiam, Arthur Greenblatt, Isaac Shpantzer, Pak Shing Cho, Michael Tseytlin, Aviv Salamon
  • Patent number: 7242481
    Abstract: An optical system provides information about tangential vibration components of a surface at remote location. The optical system includes a light source assembly that emits first and second beams, each having one or more wavelengths and one or two polarizations. The first and second beams are directed to the interrogated surface. A detector system is positioned to detect a third beam formed by at least a portion of the first and second beams being reflected from the interrogated surface. The first, second and third beams having incident and reflection angles relative to the interrogated surface that do not lay in a same plane. The detector system positioned remotely from the interrogated surface, and providing information on a phase change in the third beam relative to the first and second beam. The phase change is indicative of at least one surface vibration vector component of the interrogated surface. The detector system is a 90 degree optical hybrid balanced detector with four photodiodes.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: July 10, 2007
    Assignee: Celight, Inc.
    Inventors: Isaac Shpantzer, Aviv Salamon, Pak Shing Cho
  • Patent number: 7224906
    Abstract: The present invention relates to a method for transmitting data. An optical pulse stream comprising a plurality of return-to-zero optical pulses is prepared by modulating a phase of light output by an optical source to thereby encode data from a data source. The light of the optical pulse stream has a wavelength. The optical pulse stream is transmitted along an optical fiber of an optical network. Optical pulse streams of the invention enhance transmission performance at least in part by reducing noise at the receiver caused by fiber non-linearities.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: May 29, 2007
    Assignee: CeLight, Inc.
    Inventors: Pak Shing Cho, Nadejda Reingand, Vladimir Grigoryan, Alper Demir, Aviv Salamon, Isaac Shpantzer
  • Patent number: 7167651
    Abstract: A system for optical communication forms a family of orthogonal optical codes modulated by a data stream. The orthogonal codes are formed by creating a stream of evenly spaced-apart pulses using a pulse spreader circuit and modulating the pulses in amplitude and/or phase to form a family of orthogonal optical code words, each representing a symbol. A spreader calibration circuit is used to ensure accurate timing and modulation. Each code word is further modulated by a predetermined number of data bits. The data modulation scheme splits a code word into H and V components, and further processes the components prior to modulation with data, followed by recombining with a polarization beam combiner. The data-modulated code word is then sent, along with others to receiver. The received signal is detected and demodulated with the help of a symbol synchronization unit which establishes the beginning and end of the code words.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: January 23, 2007
    Assignee: CeLight, Inc.
    Inventors: Isaac Shpantzer, Michael Tseytlin, Yaakov Achiam, Aviv Salamon, Israel Smilanski, Olga Ritterbush, Pak Shing Cho, Li Guoliang, Jacob Khurgin, Yehouda Meiman, Alper Demir, Peter Feldman, Peter Kinget, Nagendra Krishnapura, Jaijeet Roychowdhury, Joseph Schwarzwalder, Charles Sciabarra