Patents Assigned to Cell Signaling Technology, Inc.
  • Patent number: 8288102
    Abstract: In accordance with the invention, novel gene deletions and translocations involving chromosome 2 resulting in fusion proteins combining part of Anaplastic Lymphoma Kinase (ALK) kinase with part of a secondary protein have now been identified in human solid tumors, e.g. non-small cell lung carcinoma (NSCLC). Secondary proteins include Echinoderm Microtubule-Associated Protein-Like 4 (EML-4) and TRK-Fusion Gene (TFG). The EML4-ALK fusion protein, which retains ALK tyrosine kinase activity, was confirmed to drive the proliferation and survival of NSCLC characterized by this mutation. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ALK kinase polypeptides, probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Grant
    Filed: February 27, 2010
    Date of Patent: October 16, 2012
    Assignee: Cell Signaling Technology, Inc.
    Inventors: Klarisa Rikova, Herbert Haack, Laura Sullivan, Ailan Guo, Anthony Possemato, Joan MacNeill, Ting-Lei Gu, Jian Yu
  • Publication number: 20120208824
    Abstract: The invention provides the identification of the presence of polypeptides with ROS kinase activity in mammalian lung cancer. In some embodiments, the polypeptide with ROS kinase activity is the result of a fusion between a ROS-encoding polynucleotide and a polynucleotide encoding a second (non-ROS) polypeptide. Three different fusion partners of ROS are described, namely proteins encoded by the FIG gene, the SLC34A2 gene, and the CD74 gene. The invention enables new methods for determining the presence of a polypeptide with ROS kinase activity in a biological sample, methods for screening for compounds that inhibit the proteins, and methods for inhibiting the progression of a cancer (e.g., an lung cancer).
    Type: Application
    Filed: May 23, 2011
    Publication date: August 16, 2012
    Applicant: Cell Signaling Technology, Inc.
    Inventors: Victoria McGuinness Rimkunas, Herbert Haack, Ting-Lei Gu, Ailan Guo, Anthony Paul Possemato, Katherine Eleanor Crosby, Meghan Ann Tucker, Cynthia Reeves
  • Publication number: 20120208985
    Abstract: There is provided a motif-specific, context-independent antibody that specifically binds a recurring, modified motif consisting of (i) at least one sumoylated lysine residue, and (ii) one or more degenerate amino acids bound by a peptide bond to said sumoylated lysine residue, said antibody specifically binding said motif in a plurality of non-homologous peptides or proteins within an organism in which it recurs. Also provided is a motif-specific, context-independent antibody that specifically binds a recurring, modified motif consisting of (i) a C-terminal aspartic acid residue, and (ii) one or more degenerate amino acids bound by a peptide bond to said C-terminal aspartic acid residue, said antibody specifically binding said motif in a plurality of non-homologous peptides or proteins within an organism in which it recurs.
    Type: Application
    Filed: November 4, 2011
    Publication date: August 16, 2012
    Applicant: CELL SIGNALING TECHNOLOGY, INC.
    Inventors: Michael Comb, Ailan Guo, John Edward Rush, II, Jun-Ming Cai, Jing Li, Jing Zhou
  • Patent number: 8232060
    Abstract: In accordance with the invention, novel gene deletions and translocations involving chromosome 2 resulting in fusion proteins combining part of Anaplastic Lymphoma Kinase (ALK) kinase with part of a secondary protein have now been identified in human solid tumors, e.g. non-small cell lung carcinoma (NSCLC). Secondary proteins include Echinoderm Microtubule-Associated Protein-Like 4 (EML-4) and TRK-Fusion Gene (TFG). The EML4-ALK fusion protein, which retains ALK tyrosine kinase activity, was confirmed to drive the proliferation and survival of NSCLC characterized by this mutation. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ALK kinase polypeptides, probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: July 31, 2012
    Assignee: Cell Signaling Technology, Inc.
    Inventors: Klarisa Rikova, Herbert Haack, Laura Sullivan, Ailan Guo, Anthony Possemato, Joan MacNeill
  • Publication number: 20120171696
    Abstract: In accordance with the invention, novel gene deletions and translocations involving chromosome 2 resulting in fusion proteins combining part of Anaplastic Lymphoma Kinase (ALK) kinase with part of a secondary protein have now been identified in human solid tumors, e.g. non-small cell lung carcinoma (NSCLC). Secondary proteins include Echinoderm Microtubule-Associated Protein-Like 4 (EML-4) and TRK-Fusion Gene (TFG). The EML4-ALK fusion protein, which retains ALK tyrosine kinase activity, was confirmed to drive the proliferation and survival of NSCLC characterized by this mutation. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ALK kinase polypeptides, probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Application
    Filed: February 6, 2012
    Publication date: July 5, 2012
    Applicant: CELL SIGNALING TECHNOLOGY, INC.
    Inventors: Klarisa Rikova, Herbert Haack, Laura Sullivan, Ailan Guo, Anthony Possemato, Joan MacNeill, Ting-Lei Gu, Jian Yu
  • Publication number: 20120149880
    Abstract: The invention provides a nucleic acid cassette comprising components in the following structure: A-B-C, wherein “A” is a nucleic acid sequence encoding a light chain of a first antibody (or antigen binding domain thereof), “B” is a nucleic acid sequence encoding a 2A peptide, “C” is a nucleic acid sequence encoding a heavy chain of a second antibody (or antigen binding domain thereof), and “-” is a phosphodiester or phosphorothioate bond. Also provided is a nucleic acid cassette with the structure A-p-B-C, where “p” is a nucleic acid encoding a protease recognition site, Also provided are methods for making recombinant antibodies using the nucleic acid cassette of the invention, cells and vector comprising the nucleic acid cassette of the invention, and kits for making the nucleic acid cassette of the invention.
    Type: Application
    Filed: August 20, 2010
    Publication date: June 14, 2012
    Applicant: CELL SIGNALING TECHNOLOGY, INC.
    Inventors: Wan Cheung Cheung, Shuji Sato, Roberto Polakiewicz
  • Patent number: 8168383
    Abstract: Novel gene deletions and translocations involving chromosome 2 resulting in fusion proteins combining part of Anaplastic Lymphoma Kinase (ALK) kinase with part of a secondary protein have now been identified in human solid tumors, e.g. non-small cell lung carcinoma (NSCLC). Secondary proteins include Echinoderm Microtubule-Associated Protein-Like 4 (EML-4) and TRK-Fusion Gene (TFG). The EML4-ALK fusion protein, which retains ALK tyrosine kinase activity, was confirmed to drive the proliferation and survival of NSCLC characterized by this mutation. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant polypeptides, probes for detecting it, isolated mutant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: May 1, 2012
    Assignee: Cell Signaling Technology, Inc.
    Inventors: Klarisa Rikova, Herbert Haack, Laura Sullivan, Ailan Guo, Anthony Possemato, Joan MacNeill, Ting-Lei Gu, Jian Yu
  • Publication number: 20120101108
    Abstract: The invention provides methods to identify, diagnose, and treat kidney cancer through the detection of expression and/or activity of anaplastic lymphoma kinase (ALK). The detection of the presence of a polypeptide with ALK kinase activity (e.g., by detecting expression and/or activity of the polypeptide), identify those kidney cancers that are likely to respond to an ALK-inhibiting therapeutic.
    Type: Application
    Filed: August 5, 2011
    Publication date: April 26, 2012
    Applicant: CELL SIGNALING TECHNOLOGY, INC.
    Inventors: Herbert Haack, Katherine Eleanor Crosby, Victoria McGuinness Rimkunas, Matthew Ren Silver
  • Publication number: 20110287445
    Abstract: The invention provides the identification of the presence of mutant ROS protein in human cancer. In some embodiments, the mutant ROS are FIG-ROS fusion proteins comprising part of the FIG protein fused to the kinase domain of the ROS kinase. In some embodiments, the mutant ROS is the overexpression of wild-type ROS in cancerous tissues (or tissues suspected of being cancerous) where, in normal tissue of that same tissue type, ROS is not expressed or is expressed at lower levels. The mutant ROS proteins of the invention are anticipated to drive the proliferation and survival of a subgroup of human cancers, particularly in cancers of the liver (including bile duct), pancreas, kidney, and testes. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ROS polypeptides (e.g., a FIG-ROS(S) fusion polypeptide), probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Application
    Filed: February 12, 2010
    Publication date: November 24, 2011
    Applicant: CELL SIGNALING TECHNOLOGY, INC.
    Inventors: Ting-Lei Gu, Meghan Ann Tucker, Herbert Haack, Katherine Eleanor Crosby, Victoria McGuinness Rimkunas
  • Publication number: 20110244445
    Abstract: The invention relates to a method for determining the presence of at least one distinct polypeptide in a biological sample comprising contacting the biological sample with a hydrolyzing agent, wherein the hydrolyzing agent is capable of hydrolyzing the distinct polypeptide in a sequence-specific manner such that at least one distinct peptide having a predetermined peptide measured accurate mass would result if the at least one distinct polypeptide were present in the biological sample, to obtain a hydrolyzed sample; bringing the hydrolyzed sample in contact with a substrate comprising at least one immobilized binding partner, wherein the at least one immobilized binding partner is capable of specifically binding the distinct peptide; removing the hydrolyzed sample from the substrate in a manner such that the distinct peptide would remain bound to the immobilized binding partner; contacting the substrate with an elution solution, wherein the distinct peptide would dissociate from the immobilized binding partne
    Type: Application
    Filed: February 1, 2011
    Publication date: October 6, 2011
    Applicant: Cell Signaling Technology, Inc.
    Inventors: Albrecht Moritz, John Edward Rush, II, Roberto Polakiewicz
  • Patent number: 7999080
    Abstract: The invention discloses novel phosphorylation sites identified in signal transduction proteins and pathways, and provides phosphorylation-site specific antibodies and heavy-isotope labeled peptides (AQUA peptides) for the selective detection and quantification of these phosphorylated sites/proteins, as well as methods of using the reagents for such purpose.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: August 16, 2011
    Assignee: Cell Signaling Technology, Inc.
    Inventors: Peter Hornbeck, Valerie Goss, Kimberly Lee, Ting-Lei Gu, Albrecht Moritz
  • Publication number: 20110195447
    Abstract: The invention discloses a previously unidentified subset of mammalian non-small cell lung carcinomas (NSCLC) in which platelet-derived growth factor receptor alpha (PDGFR?) is expressed and is driving the disease, and provides methods for identifying a mammalian NSCLC tumor that belongs to a subset of NSCLC tumors in which PDGFR? is expressed, and for identifying a NSCLC tumor that is likely to respond to a PDGFR?-inhibiting therapeutic. The invention also provides methods for inhibiting the progression of a mammalian NSCLC tumor in which PDGFR? is expressed, and for determining whether a compound inhibits the progression of a PDGFR?-expressing mammalian NSCLC tumor.
    Type: Application
    Filed: December 30, 2010
    Publication date: August 11, 2011
    Applicant: Cell Signaling Technology, Inc.
    Inventors: Klarisa Rikova, Roberto Polakiewicz, Ailan Guo, Katherine Crosby, Qingfu Zeng, Kimberly Lee
  • Patent number: 7977462
    Abstract: The invention discloses 482 novel phosphorylation sites identified in carcinoma and/or leukemia, peptides (including AQUA peptides) comprising a phosphorylation site of the invention, antibodies specifically bind to a novel phosphorylation site of the invention, and diagnostic and therapeutic uses of the above.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: July 12, 2011
    Assignee: Cell Signaling Technology, Inc.
    Inventors: Peter Hornbeck, Ailan Guo, Ting-Lei Gu, Klarisa Rikova, Albrecht Moritz, Charles Farnsworth, Matthew Stokes, Jian Yu, Erik Spek, Yu Li, Anthony Possemato, Jessica Cherry, Valerie Goss, Jeffrey Mitchell, John Rush, Corinne Michaud
  • Patent number: 7973134
    Abstract: The invention discloses 211 novel phosphorylation sites identified in signal transduction proteins and pathways underlying Anaplastic Large Cell Lymphoma (ALCL) involving the ALK-NPM translocation/fusion, and provides phosphorylation-site specific antibodies and heavy-isotope labeled peptides (AQUA peptides) for the selective detection and quantification of these phosphorylated sites/proteins, as well as methods of using the reagents for such purpose. Among the phosphorylation sites identified are sites occurring in the following protein types: Protein Kinases (including Receptor Tyrosine Kinases), Adaptor/Scaffold Proteins, Cellular Metabolism or Miscellaneous Enzymes, Oxidoreductases, Transcription Factors, Cytoskeletal Proteins, Translation Initiation Complexes, RNA Binding Proteins, Proteases, Acetyltransferases, G protein regulators/GTPases, Helicases, Apoptosis/Cell Cycle Regulation proteins, and Hydrolases.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: July 5, 2011
    Assignee: Cell Signaling Technology, Inc.
    Inventors: Albrecht Moritz, Kimberly Lee, John Rush, Roberto Polakiewicz
  • Publication number: 20110143368
    Abstract: The invention discloses 142 novel phosphorylation sites identified in carcinoma, peptides (including AQUA peptides) comprising a phosphorylation site of the invention, antibodies specifically bind to a novel phosphorylation site of the invention, and diagnostic and therapeutic uses of the above.
    Type: Application
    Filed: August 20, 2010
    Publication date: June 16, 2011
    Applicant: Cell Signaling Technology, Inc.
    Inventors: Ting-Lei Gu, Anthony Possemato, Klarisa Rikova, Jian Yu, Valerie Goss, Corinne Michaud, Charles Farnsworth, Ailan Guo, Albrecht Moritz, Yu Li
  • Publication number: 20110130547
    Abstract: The invention discloses 168 novel phosphorylation sites identified in signal transduction proteins and pathways downstream of, and including, EGFR kinase, and provides phosphorylation-site specific antibodies and heavy-isotope labeled peptides (AQUA peptides) for the selective detection and quantification of these phosphorylated sites/proteins, as well as methods of using the reagents for such purpose. Among the phosphorylation sites identified are sites occurring in the following protein types: Actin Binding proteins, Adaptor/Scaffold proteins, Calcium-Binding Proteins, Cell Cycle Regulation proteins, Cytoskeletal proteins, DNA Binding and Replication Proteins, GTPase Activating proteins, Guanine Nucleotide Exchange Factor proteins, Lipid Kinases, Receptor Tyrosine Kinases, Receptor Tyrosine Kinase ligands, Protein Kinases, Receptor and Protein Phosphatases, Transcription Factor proteins, Tumor Suppressor proteins, and Vesicle proteins.
    Type: Application
    Filed: October 4, 2010
    Publication date: June 2, 2011
    Applicant: CELL SIGNALING TECHNOLOGY, INC.
    Inventors: Ailan Guo, Kimberly Lee, Klarisa Rikova, Charles Farnsworth, Albrecht Moritz, Yu Li, Roberto Polakiewicz
  • Publication number: 20110111424
    Abstract: The invention relates to antibody reagents that specifically bind to peptides carrying a ubiquitin remnant from a digested or chemically treated biological sample. The reagents allow the technician to identify ubiquitinated polypeptides as well as the sites of ubiquitination on them. The reagents are preferably employed in proteomic analysis using mass spectrometry. The antibody reagents specifically bind to the remnant of ubiquitin (i.e., a diglycine modified epsilon amine of lysine) left on a peptide which as been generated by digesting or chemically treating ubiquitinated proteins. The inventive antibody reagents' affinity to the ubiquitin remnant does not depend on the remaining amino acid sequences flanking the modified (i.e., ubiquitinated) lysine, i.e., they are context independent.
    Type: Application
    Filed: December 14, 2010
    Publication date: May 12, 2011
    Applicant: Cell Signaling Technology, Inc.
    Inventors: John Edward Rush, II, Jing Li, Ailan Guo
  • Patent number: 7939636
    Abstract: The invention discloses 102 novel phosphorylation sites identified in signal transduction proteins and pathways downstream of c-Src kinase, and provides phosphorylation-site specific antibodies and heavy-isotope labeled peptides (AQUA peptides) for the selective detection and quantification of these phosphorylated sites/proteins, as well as methods of using the reagents for such purpose. Among the phosphorylation sites identified are sites occurring in the following protein types: Adaptor/Scaffold proteins, Actin Binding proteins, Cytoskeletal proteins, G protein/GTPase Activating protein/Guanine Nucleotide Exchange Factor proteins, Helicases, RNA Binding proteins, Transcription/Translation Factor or Initiation Complex proteins, Cellular Metabolism Enzymes, and Vesicle proteins.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: May 10, 2011
    Assignee: Cell Signaling Technology, Inc.
    Inventors: Albrecht Moritz, Kimberly Lee, John Rush, Roberto Polakiewicz
  • Publication number: 20110104820
    Abstract: The invention discloses 94 novel phosphorylation sites identified in carcinoma and leukemia, peptides (including AQUA peptides) comprising a phosphorylation site of the invention, antibodies that specifically bind to a novel phosphorylation site of the invention, and diagnostic and therapeutic uses of the above.
    Type: Application
    Filed: October 12, 2010
    Publication date: May 5, 2011
    Applicant: CELL SIGNALING TECHNOLOGY, INC.
    Inventors: John Edward Rush, II, Ting-Lei Gu, Valerie Goss, Anthony Possemato
  • Patent number: 7932044
    Abstract: The invention discloses a previously unidentified subset of mammalian non-small cell lung carcinomas (NSCLC) in which platelet-derived growth factor receptor alpha (PDGFR?) is expressed and is driving the disease, and provides methods for identifying a mammalian NSCLC tumor that belongs to a subset of NSCLC tumors in which PDGFR? is expressed, and for identifying a NSCLC tumor that is likely to respond to a PDGFR?-inhibiting therapeutic. The invention also provides methods for inhibiting the progression of a mammalian NSCLC tumor in which PDGFR? is expressed, and for determining whether a compound inhibits the progression of a PDGFR?-expressing mammalian NSCLC tumor.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: April 26, 2011
    Assignee: Cell Signaling Technology, Inc.
    Inventors: Klarisa Rikova, Roberto Polakiewicz, Ailan Guo, Katherine Crosby, Qingfu Zeng, Kimberly Lee