Patents Assigned to Cell Signaling Technology
  • Patent number: 8288102
    Abstract: In accordance with the invention, novel gene deletions and translocations involving chromosome 2 resulting in fusion proteins combining part of Anaplastic Lymphoma Kinase (ALK) kinase with part of a secondary protein have now been identified in human solid tumors, e.g. non-small cell lung carcinoma (NSCLC). Secondary proteins include Echinoderm Microtubule-Associated Protein-Like 4 (EML-4) and TRK-Fusion Gene (TFG). The EML4-ALK fusion protein, which retains ALK tyrosine kinase activity, was confirmed to drive the proliferation and survival of NSCLC characterized by this mutation. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ALK kinase polypeptides, probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Grant
    Filed: February 27, 2010
    Date of Patent: October 16, 2012
    Assignee: Cell Signaling Technology, Inc.
    Inventors: Klarisa Rikova, Herbert Haack, Laura Sullivan, Ailan Guo, Anthony Possemato, Joan MacNeill, Ting-Lei Gu, Jian Yu
  • Publication number: 20120208824
    Abstract: The invention provides the identification of the presence of polypeptides with ROS kinase activity in mammalian lung cancer. In some embodiments, the polypeptide with ROS kinase activity is the result of a fusion between a ROS-encoding polynucleotide and a polynucleotide encoding a second (non-ROS) polypeptide. Three different fusion partners of ROS are described, namely proteins encoded by the FIG gene, the SLC34A2 gene, and the CD74 gene. The invention enables new methods for determining the presence of a polypeptide with ROS kinase activity in a biological sample, methods for screening for compounds that inhibit the proteins, and methods for inhibiting the progression of a cancer (e.g., an lung cancer).
    Type: Application
    Filed: May 23, 2011
    Publication date: August 16, 2012
    Applicant: Cell Signaling Technology, Inc.
    Inventors: Victoria McGuinness Rimkunas, Herbert Haack, Ting-Lei Gu, Ailan Guo, Anthony Paul Possemato, Katherine Eleanor Crosby, Meghan Ann Tucker, Cynthia Reeves
  • Patent number: 8232060
    Abstract: In accordance with the invention, novel gene deletions and translocations involving chromosome 2 resulting in fusion proteins combining part of Anaplastic Lymphoma Kinase (ALK) kinase with part of a secondary protein have now been identified in human solid tumors, e.g. non-small cell lung carcinoma (NSCLC). Secondary proteins include Echinoderm Microtubule-Associated Protein-Like 4 (EML-4) and TRK-Fusion Gene (TFG). The EML4-ALK fusion protein, which retains ALK tyrosine kinase activity, was confirmed to drive the proliferation and survival of NSCLC characterized by this mutation. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ALK kinase polypeptides, probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: July 31, 2012
    Assignee: Cell Signaling Technology, Inc.
    Inventors: Klarisa Rikova, Herbert Haack, Laura Sullivan, Ailan Guo, Anthony Possemato, Joan MacNeill
  • Patent number: 8168383
    Abstract: Novel gene deletions and translocations involving chromosome 2 resulting in fusion proteins combining part of Anaplastic Lymphoma Kinase (ALK) kinase with part of a secondary protein have now been identified in human solid tumors, e.g. non-small cell lung carcinoma (NSCLC). Secondary proteins include Echinoderm Microtubule-Associated Protein-Like 4 (EML-4) and TRK-Fusion Gene (TFG). The EML4-ALK fusion protein, which retains ALK tyrosine kinase activity, was confirmed to drive the proliferation and survival of NSCLC characterized by this mutation. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant polypeptides, probes for detecting it, isolated mutant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: May 1, 2012
    Assignee: Cell Signaling Technology, Inc.
    Inventors: Klarisa Rikova, Herbert Haack, Laura Sullivan, Ailan Guo, Anthony Possemato, Joan MacNeill, Ting-Lei Gu, Jian Yu
  • Publication number: 20110244445
    Abstract: The invention relates to a method for determining the presence of at least one distinct polypeptide in a biological sample comprising contacting the biological sample with a hydrolyzing agent, wherein the hydrolyzing agent is capable of hydrolyzing the distinct polypeptide in a sequence-specific manner such that at least one distinct peptide having a predetermined peptide measured accurate mass would result if the at least one distinct polypeptide were present in the biological sample, to obtain a hydrolyzed sample; bringing the hydrolyzed sample in contact with a substrate comprising at least one immobilized binding partner, wherein the at least one immobilized binding partner is capable of specifically binding the distinct peptide; removing the hydrolyzed sample from the substrate in a manner such that the distinct peptide would remain bound to the immobilized binding partner; contacting the substrate with an elution solution, wherein the distinct peptide would dissociate from the immobilized binding partne
    Type: Application
    Filed: February 1, 2011
    Publication date: October 6, 2011
    Applicant: Cell Signaling Technology, Inc.
    Inventors: Albrecht Moritz, John Edward Rush, II, Roberto Polakiewicz
  • Patent number: 7999080
    Abstract: The invention discloses novel phosphorylation sites identified in signal transduction proteins and pathways, and provides phosphorylation-site specific antibodies and heavy-isotope labeled peptides (AQUA peptides) for the selective detection and quantification of these phosphorylated sites/proteins, as well as methods of using the reagents for such purpose.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: August 16, 2011
    Assignee: Cell Signaling Technology, Inc.
    Inventors: Peter Hornbeck, Valerie Goss, Kimberly Lee, Ting-Lei Gu, Albrecht Moritz
  • Publication number: 20110195447
    Abstract: The invention discloses a previously unidentified subset of mammalian non-small cell lung carcinomas (NSCLC) in which platelet-derived growth factor receptor alpha (PDGFR?) is expressed and is driving the disease, and provides methods for identifying a mammalian NSCLC tumor that belongs to a subset of NSCLC tumors in which PDGFR? is expressed, and for identifying a NSCLC tumor that is likely to respond to a PDGFR?-inhibiting therapeutic. The invention also provides methods for inhibiting the progression of a mammalian NSCLC tumor in which PDGFR? is expressed, and for determining whether a compound inhibits the progression of a PDGFR?-expressing mammalian NSCLC tumor.
    Type: Application
    Filed: December 30, 2010
    Publication date: August 11, 2011
    Applicant: Cell Signaling Technology, Inc.
    Inventors: Klarisa Rikova, Roberto Polakiewicz, Ailan Guo, Katherine Crosby, Qingfu Zeng, Kimberly Lee
  • Patent number: 7977462
    Abstract: The invention discloses 482 novel phosphorylation sites identified in carcinoma and/or leukemia, peptides (including AQUA peptides) comprising a phosphorylation site of the invention, antibodies specifically bind to a novel phosphorylation site of the invention, and diagnostic and therapeutic uses of the above.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: July 12, 2011
    Assignee: Cell Signaling Technology, Inc.
    Inventors: Peter Hornbeck, Ailan Guo, Ting-Lei Gu, Klarisa Rikova, Albrecht Moritz, Charles Farnsworth, Matthew Stokes, Jian Yu, Erik Spek, Yu Li, Anthony Possemato, Jessica Cherry, Valerie Goss, Jeffrey Mitchell, John Rush, Corinne Michaud
  • Patent number: 7973134
    Abstract: The invention discloses 211 novel phosphorylation sites identified in signal transduction proteins and pathways underlying Anaplastic Large Cell Lymphoma (ALCL) involving the ALK-NPM translocation/fusion, and provides phosphorylation-site specific antibodies and heavy-isotope labeled peptides (AQUA peptides) for the selective detection and quantification of these phosphorylated sites/proteins, as well as methods of using the reagents for such purpose. Among the phosphorylation sites identified are sites occurring in the following protein types: Protein Kinases (including Receptor Tyrosine Kinases), Adaptor/Scaffold Proteins, Cellular Metabolism or Miscellaneous Enzymes, Oxidoreductases, Transcription Factors, Cytoskeletal Proteins, Translation Initiation Complexes, RNA Binding Proteins, Proteases, Acetyltransferases, G protein regulators/GTPases, Helicases, Apoptosis/Cell Cycle Regulation proteins, and Hydrolases.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: July 5, 2011
    Assignee: Cell Signaling Technology, Inc.
    Inventors: Albrecht Moritz, Kimberly Lee, John Rush, Roberto Polakiewicz
  • Publication number: 20110143368
    Abstract: The invention discloses 142 novel phosphorylation sites identified in carcinoma, peptides (including AQUA peptides) comprising a phosphorylation site of the invention, antibodies specifically bind to a novel phosphorylation site of the invention, and diagnostic and therapeutic uses of the above.
    Type: Application
    Filed: August 20, 2010
    Publication date: June 16, 2011
    Applicant: Cell Signaling Technology, Inc.
    Inventors: Ting-Lei Gu, Anthony Possemato, Klarisa Rikova, Jian Yu, Valerie Goss, Corinne Michaud, Charles Farnsworth, Ailan Guo, Albrecht Moritz, Yu Li
  • Publication number: 20110111424
    Abstract: The invention relates to antibody reagents that specifically bind to peptides carrying a ubiquitin remnant from a digested or chemically treated biological sample. The reagents allow the technician to identify ubiquitinated polypeptides as well as the sites of ubiquitination on them. The reagents are preferably employed in proteomic analysis using mass spectrometry. The antibody reagents specifically bind to the remnant of ubiquitin (i.e., a diglycine modified epsilon amine of lysine) left on a peptide which as been generated by digesting or chemically treating ubiquitinated proteins. The inventive antibody reagents' affinity to the ubiquitin remnant does not depend on the remaining amino acid sequences flanking the modified (i.e., ubiquitinated) lysine, i.e., they are context independent.
    Type: Application
    Filed: December 14, 2010
    Publication date: May 12, 2011
    Applicant: Cell Signaling Technology, Inc.
    Inventors: John Edward Rush, II, Jing Li, Ailan Guo
  • Patent number: 7939636
    Abstract: The invention discloses 102 novel phosphorylation sites identified in signal transduction proteins and pathways downstream of c-Src kinase, and provides phosphorylation-site specific antibodies and heavy-isotope labeled peptides (AQUA peptides) for the selective detection and quantification of these phosphorylated sites/proteins, as well as methods of using the reagents for such purpose. Among the phosphorylation sites identified are sites occurring in the following protein types: Adaptor/Scaffold proteins, Actin Binding proteins, Cytoskeletal proteins, G protein/GTPase Activating protein/Guanine Nucleotide Exchange Factor proteins, Helicases, RNA Binding proteins, Transcription/Translation Factor or Initiation Complex proteins, Cellular Metabolism Enzymes, and Vesicle proteins.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: May 10, 2011
    Assignee: Cell Signaling Technology, Inc.
    Inventors: Albrecht Moritz, Kimberly Lee, John Rush, Roberto Polakiewicz
  • Publication number: 20110105732
    Abstract: The invention discloses 214 novel phosphorylation sites identified in signal transduction proteins and pathways underlying human carcinoma, and provides phosphorylation-site specific antibodies and heavy-isotope labeled peptides (AQUA peptides) for the selective detection and quantification of these phosphorylated sites/proteins, as well as methods of using the reagents for such purpose. Among the phosphorylation sites identified are sites occurring in the following protein types: Adaptor/Scaffold proteins, Cytoskeleton proteins, GTP Signaling proteins, Kinases, Metabolism proteins, Phosphatases/Phospho-diesterases/Proteases, Receptor proteins, RNA Processing proteins, Transcription proteins, Translation proteins, Transporter proteins, and Ubitquitin proteins, as well as other protein types.
    Type: Application
    Filed: January 6, 2011
    Publication date: May 5, 2011
    Applicant: Cell Signaling Technology
    Inventors: Ailan Guo, Roberto Polakiewicz, Charles Farnsworth, Klarisa Rikova, Albrecht Moritz, Kimberly Lee, Yu Li
  • Patent number: 7932044
    Abstract: The invention discloses a previously unidentified subset of mammalian non-small cell lung carcinomas (NSCLC) in which platelet-derived growth factor receptor alpha (PDGFR?) is expressed and is driving the disease, and provides methods for identifying a mammalian NSCLC tumor that belongs to a subset of NSCLC tumors in which PDGFR? is expressed, and for identifying a NSCLC tumor that is likely to respond to a PDGFR?-inhibiting therapeutic. The invention also provides methods for inhibiting the progression of a mammalian NSCLC tumor in which PDGFR? is expressed, and for determining whether a compound inhibits the progression of a PDGFR?-expressing mammalian NSCLC tumor.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: April 26, 2011
    Assignee: Cell Signaling Technology, Inc.
    Inventors: Klarisa Rikova, Roberto Polakiewicz, Ailan Guo, Katherine Crosby, Qingfu Zeng, Kimberly Lee
  • Patent number: 7906297
    Abstract: The invention discloses two novel phosphorylation sites in human ATR kinase, serine 428 (Ser428) and serine 2317 (Ser2317) respectively, and provides reagents, including antibodies and AQUA peptides, that selectively bind to and/or detect ATR only when phosphorylated at one or more of these respective sites, but do not bind to ATR when not phosphorylated at these respective sites. Also provided are methods for determining the phosphorylation of ATR kinase in a biological sample, by using a detectable reagent that binds to ATR only when phosphorylated at Ser428 and/or Ser2317. Kits comprising the ATR (Ser428, Ser2317)-specific reagents of the invention are also provided.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: March 15, 2011
    Assignee: Cell Signaling Technology, Inc.
    Inventors: Mark Livingstone, Hong Ruan, Robert Polakiewicz
  • Patent number: 7888480
    Abstract: The invention discloses nearly 288 novel phosphorylation sites identified in signal transduction proteins and pathways underlying human Leukemia, and provides phosphorylation-site specific antibodies and heavy-isotope labeled peptides (AQUA peptides) for the selective detection and quantification of these phosphorylated sites/proteins, as well as methods of using the reagents for such purpose. Among the phosphorylation sites identified are sites occurring in the following protein types: Adaptor/Scaffold proteins, Cytoskeletal proteins, Cellular Metabolism enzymes, G Protein/GTPase Activating/Guanine Nucleotide Exchange Factor proteins, Immunoglobulin Superfamily proteins, Inhibitor proteins, Lipid Kinases, Nuclear DNA Repair/RNA Binding/Transcription proteins, Serine/Threonine Protein Kinases, Tyrosine Kinases, Protein Phosphatases, and Translation/Transporter proteins.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: February 15, 2011
    Assignee: Cell Signaling Technology, Inc.
    Inventors: Roberto Polakiewicz, Valerie Goss, Albrecht Moritz, Ting-Lei Gu, Kimberly Lee
  • Patent number: 7833736
    Abstract: The invention discloses ten (10) protein markers predictive of cancer resistance or responsiveness to Type III Receptor Tyrosine Kinase (RTK) inhibitors, and provides methods for identifying a cancer that is likely to be resistant to a Type III RTK-inhibiting therapeutic by examining expression and/or activity of one or more of the disclosed biomarkers in a biological sample from the cancer. Methods for identifying a compound that inhibits a cancer resistant to a Type III RTK-inhibiting therapeutic by determining the effect of the compound on one or more of the disclosed marker proteins are also provided.
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: November 16, 2010
    Assignee: Cell Signaling Technology, Inc.
    Inventors: Herbert Haack, Laura Sullivan
  • Publication number: 20100266580
    Abstract: In accordance with the invention, a novel gene translocation in human Hodgkin's lymphoma (HL) that results in a fusion protein combining part of C17ORF61 with Thirty-eight-negative kinase 1 (Tnk1) kinase has now been identified. The TNK1-C17ORF61 fusion protein, which retains TNK1 tyrosine kinase activity, was confirmed to drive the proliferation and survival of Hodgkin's lymphoma (HL) cell line, L-540. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant TNK1 kinase polypeptides, probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Application
    Filed: December 8, 2008
    Publication date: October 21, 2010
    Applicant: Cell Signaling Technology, Inc.
    Inventor: Ting-Lei Gu
  • Patent number: 7807789
    Abstract: The invention discloses 168 novel phosphorylation sites identified in signal transduction proteins and pathways downstream of, and including, EGFR kinase, and provides phosphorylation-site specific antibodies and heavy-isotope labeled peptides (AQUA peptides) for the selective detection and quantification of these phosphorylated sites/proteins, as well as methods of using the reagents for such purpose. Among the phosphorylation sites identified are sites occurring in the following protein types: Actin Binding proteins, Adaptor/Scaffold proteins, Calcium-Binding Proteins, Cell Cycle Regulation proteins, Cytoskeletal proteins, DNA Binding and Replication Proteins, GTPase Activating proteins, Guanine Nucleotide Exchange Factor proteins, Lipid Kinases, Receptor Tyrosine Kinases, Receptor Tyrosine Kinase ligands, Protein Kinases, Receptor and Protein Phosphatases, Transcription Factor proteins, Tumor Suppressor proteins, and Vesicle proteins.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: October 5, 2010
    Assignee: Cell Signaling Technology, Inc.
    Inventors: Ailan Guo, Kimberly Lee, Klarisa Rikova, Charles Farnsworth, Albrecht Moritz, Yu Li, Robert Polakiewicz
  • Publication number: 20100143918
    Abstract: In accordance with the invention, a novel gene translocation, (4p15, 6q22), in human non-small cell lung carcinoma (NSCLC) that results in fusion proteins combining part of Sodium-dependent Phosphate Transporter Isoform NaPi-3b protein (SLC34A2) with Proto-oncogene Tyrosine Protein Kinase ROS Precursor (ROS) kinase has now been identified. The SLC34A2-ROS fusion proteins are anticipated to drive the proliferation and survival of cancer cells, and particularly drive the proliferation and survival of a subgroup of NSCLC tumor cells. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ROS kinase polypeptides, probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Application
    Filed: October 17, 2009
    Publication date: June 10, 2010
    Applicant: Cell Signaling Technology, Inc.
    Inventors: Ailan Guo, Ting-Lei Gu, Anthony Possemato