Abstract: Disclosed is a medium composition for culturing self-activated lymphocytes, which contains anti-CD3 antibody and anti-CD16 antibody in addition to interleukin 2 (IL-2), interleukin 12 (IL-12) and interleukin 18 (IL-18) in a medium, and thus can efficiently proliferate and activate NK cells, T cells and NKT cells and, at the same time, can significantly increase the ratio of NK cells in lymphocytes so as to provide immunocytes having excellent effects on the treatment of various kinds of malignant tumors, and a method for culturing self-activated lymphocytes using the medium composition.
Abstract: There is provided a membrane electrode assembly including an anode gas diffusion layer included in an anode and a cathode gas diffusion layer included in a cathode, wherein the anode gas diffusion layer includes an anode gas diffusion substrate and an anode microporous layer disposed on a first surface of the anode gas diffusion substrate, wherein the cathode gas diffusion layer includes a cathode gas diffusion substrate and a cathode microporous layer disposed on a first surface of the cathode gas diffusion substrate, and wherein at least one of a strike-through ratio on a second surface of the anode gas diffusion substrate and a strike-through ratio on a second surface of the cathode gas diffusion substrate is larger than 0.2%.
Abstract: A fuel cell includes an electrolyte membrane, an anode which is disposed on one surface of the electrolyte membrane and includes an anode catalyst layer, a cathode which is disposed on the other surface of the electrolyte membrane and includes a cathode catalyst layer, and an adjustment unit which allows at least one of a relative humidity of a gas which is in contact with the anode catalyst layer and a relative humidity of a gas which is in contact with the cathode catalyst layer to be decreased down to less than 100% before a fuel is supplied at the time of starting.
Abstract: This fuel cell system [[1]] provides a fuel cell system that can be reduced in cost. This fuel cell system [[1]] includes a reformer [[11]] for reforming raw fuel using a burner [[15]] to generate reformed gas, and a CO shift converter [[12]] shaped like a tube provided integrally with the reformer [[11]] such that the reformer [[11]] is positioned in the tube, for reducing a carbon monoxide concentration in the reformed gas generated by the reformer [[11]]. In the fuel cell system [[1]], the CO shift converter [[12]] can be heated with exhaust gas from the burner [[15]] to increase the temperature thereof. Therefore, the need for a heater to increase the temperature of the CO shift converter [[12]] can be eliminated.