Abstract: The present invention relates to nanoparticles and their use to form nanocomposite material, in particular bionanocomposite material, specifically wherein the nanoparticles are formed using plant virus attached to a scaffold of cellulosic material and/or cellulose derived materials, in particular wherein said cellulosic material further comprises plant cell components, for example hemicellulose, pectin, protein or combinations thereof.
Type:
Grant
Filed:
April 1, 2016
Date of Patent:
August 1, 2023
Assignee:
CelluComp Limited
Inventors:
Mikhail Talianski, Andrew Love, Eric Whale, David Hepworth, Natalia Petukhova, Jane Shaw
Abstract: The present invention relates to nanoparticles and their use to form nanocomposite material, in particular bionanocomposite material, specifically wherein the nanoparticles are formed using plant virus attached to a scaffold of cellulosic material and/or cellulose derived materials, in particular wherein said cellulosic material further comprises plant cell components, for example hemicellulose, pectin, protein or combinations thereof.
Type:
Application
Filed:
April 1, 2016
Publication date:
May 3, 2018
Applicant:
CelluComp Limited
Inventors:
Mikhail TALIANSKI, Andrew LOVE, Eric WHALE, David HEPWORTH, Natalia PETUKHOVA, Jane SHAW
Abstract: A composition and method of preparing a composition is presented wherein the composition comprises cellulose platelets and the cellulose platelets comprise at least 60% cellulose by dry weight, less than 10% pectin by dry weight and at least 5% hemicellulose by dry weight. The composition can be concentrated to at least 25% by weight solids content by pressing under low pressure, whilst retaining the ability to be re suspended within an aqueous medium. The resulting aqueous medium obtains the desired properties of the composition, such as increased viscosity or increased dispersion of pigment particles, for example, to the same extent as the composition before pressing.
Abstract: A biocomposite material (1) and methods of production thereof are described. The biocomposite material (1) exhibits a physical stiffness, strength and toughness comparable to known glass fiber composites while its composition makes it inherently impermeable to water. A general formulation for the biocomposite material (1) is given by the expression: Cel(1-x-y) HPIx HPOy where “Cel” represents cellulose fragments (2), “HPI” represents hydrophilic binders (4), “HPO” represents hydrophobic binders (5) and (x) and (y) quantify the percentage by weight of the hydrophilic (4) and hydrophobic binders (5) present within a material, respectively. The described properties of the biocomposite material (1) are achieved when (x) is within the range of from 0.05 to 0.55 and (y) is within the range of from 0.05 to 0.65.