Patents Assigned to Cellular Bioengineering, Inc.
  • Patent number: 9458419
    Abstract: This invention relates to an aqueous polymer composition and to films formed from this aqueous composition. The aqueous composition may be used in a method for removing contaminate material from a substrate. The aqueous polymer composition may comprise: water; and at least one water-soluble film forming polymer. In one embodiment, the aqueous composition may further comprise at least one chelating agent and/or at least one surfactant. The aqueous polymer composition may be applied to a contaminated substrate or to a clean substrate which is subjected to subsequent contamination. The aqueous composition may be dehydrated and/or the polymer may be crosslinked to form a film. When applied to a contaminated substrate, the film may combine with the contaminates. When applied to a clean substrate, the contaminate material may subsequently contact and adhere to the film.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: October 4, 2016
    Assignee: Cellular Bioengineering, Inc.
    Inventors: Garry Edgington, Shaosheng Dong, Ge Ming Lui, Hank Wuh, Stephen L. Sherman
  • Patent number: 7931938
    Abstract: This present invention describes a method of coating a polymer surface with diamond-like carbon (DLC) to render it useful as a carrier for cells derived from neural crest origin, preferable neuronal cells that form dendrites. The biopolymer to be coated with the DLC will include biodegradable polymers and other implantable biopolymers to act as a carrier system for cell transplantation into the various parts of the body, including the brain, the eye, the central and peripheral nervous system, the lung, the liver, the spleen, the kidney, and the bone and cartilage. The biopolymer can be in sheet form or microparticle form, and can be imbedded with, or incorporated into during its synthesis, attachment or growth promoting reagents to enhance and support neuraonal call attachment and growth. This coating method can also augment other coating agents such as extracellular matrix (ECM) secreted by cultured bovine corneal endothelial cells, as well as adhesive molecules such as fibronectin, laminin, and RGDS.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: April 26, 2011
    Assignee: Cellular Bioengineering, Inc.
    Inventor: Ge Ming Lui
  • Patent number: 7753955
    Abstract: This present invention describes methods and compositions useful for the reconstruction of various soft tissue features such as lips, areola, and many other features by taking a mold of the skin feature to be replaced, such as the areola, prior to surgical resection, re-creating the size and shape of the soft tissue feature, for example, the nipple and areola, and making a polymer or biopolymer scaffold that is biocompatible, has the ability to allow the epithelization of the skin cells over the polymer, the capability of cell integration into the body of the scaffold, as well as the capability of infiltration of surrounding nerve fibers into the substance of the scaffold, so that the patient may have the benefit of a reconstructed soft tissue feature that not only has the same size and shape and appearance as the native tissue, but also has functional sensation.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: July 13, 2010
    Assignee: Cellular Bioengineering, Inc.
    Inventor: Hank C. K. Wuh
  • Publication number: 20070092550
    Abstract: This invention discloses methods to attach and grow a monolayer of cultured human corneal endothelial cells onto the endothelial side of the stroma synthesized from biopolymer to generate a more bio-equivalent artificial cornea. The approaches will include the use of attachment and growth promoting agents such as fibronectin, laminin, RGDS, collagen type IV, bFGF conjugated with polycarbophil, and EGF conjugated with polycarbophil. The patent also describes a method to create a self-sustaining polymer containing adhesive molecules and growth factors to support the attachment and proliferation of cultured human corneal endothelial cells for corneal transplantation either as a half-thickness device or full-thickness button replacement. An approach for the implantation of cultured retinal pigment epithelial (RPE) cells into the sub-retinal space for treatment of age-related macular degeneration (ARMD) is disclosed in this invention.
    Type: Application
    Filed: October 7, 2004
    Publication date: April 26, 2007
    Applicant: CELLULAR BIOENGINEERING, INC.
    Inventor: Ge Ming Lui