Patents Assigned to Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A.
  • Patent number: 10023494
    Abstract: A coated article is provided, having a coating supported by a glass substrate where the coating includes at least one color and/or reflectivity-adjusting absorber layer. The absorber layer(s) allows color tuning, and reduces the glass side reflection of the coated article and/or allows sheet resistance of the coating to be reduced without degrading glass side reflection. In certain example embodiments the absorber layer is provided between first and second dielectric layers which may be of substantially the same material and/or composition. In certain example embodiments, the coated article is capable of achieving desirable transmission, together with desired color, low reflectivity, and low selectivity, when having only one infrared (IR) reflecting layer of silver and/or gold. Coated articles according to certain example embodiments of this invention may be used in the context of insulating glass (IG) window units, monolithic windows, or the like.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: July 17, 2018
    Assignees: Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.), Guardian Glass, LLC
    Inventors: Hartmut Knoll, Jochen Butz, Uwe Kriltz, Bernd Disteldorf, Jose Ferreira, Pierrot Pallotta
  • Patent number: 9845261
    Abstract: A method of making a heat treated (HT) substantially transparent coated article to be used in shower door applications, window applications, tabletop applications, or any other suitable applications. For example, certain embodiments relate to a method of making a coated article including a step of heat treating a glass substrate coated with at least layer of or including carbon (e.g., diamond-like carbon (DLC)) and an overlying protective film thereon. The protective film may be of or include both (a) an oxygen blocking or barrier layer, and (b) a release layer, with the release layer being located between at least the carbon based layer and the oxygen blocking layer. The release layer is of or includes zinc oxynitride (e.g., ZnOxNz). Following and/or during heat treatment (e.g., thermal tempering, or the like) the protective film may be entirely or partially removed. Other embodiments of this invention relate to the pre-HT coated article, or the post-HT coated article.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: December 19, 2017
    Assignees: Centre Luxembourgeois de Recherches Pour le Verre et la Ceramique S.A. (C.R.V.C.), Guardian Glass, LLC
    Inventors: Jens-Peter Muller, Vijayen S. Veerasamy
  • Patent number: 9816316
    Abstract: A low-E coating supported by a glass substrate, the coating from the glass substrate outwardly including at least the following layers: a dielectric layer of or including silicon nitride; a high index layer having a refractive index of at least 2.1; another dielectric layer of or including silicon nitride; a layer comprising zinc oxide; an infrared (IR) reflecting layer, wherein the coating includes only one IR reflecting layer; and an overcoat including (i) a layer comprising tin oxide and (ii) a layer comprising silicon nitride located over and contacting the layer comprising tin oxide. An IG unit including the coating may have a visible transmission of at least 70%.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: November 14, 2017
    Assignees: Guardian Glass, LLC, Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventors: Jingyu Lao, Philip J. Lingle, Brent Boyce, Bernd Disteldorf, Richard Blacker
  • Patent number: 9802860
    Abstract: Certain example embodiments relate to a coated article including at least one infrared (IR) reflecting layer of a material such as silver or the like in a low-E coating, and methods of making the same. In certain cases, at least one layer of the coating is of or includes nickel and/or titanium (e.g., NixTiyOz). The provision of a layer including nickel titanium and/or an oxide thereof may permit a layer to be used that has good adhesion to the IR reflecting layer, and reduced absorption of visible light (resulting in a coated article with a higher visible transmission). When a layer including nickel titanium oxide is provided directly over and/or under the IR reflecting layer (e.g., as a barrier layer), this may result in improved chemical and mechanical durability. Thus, visible transmission may be improved if desired, without compromising durability; or, durability may simply be increased.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: October 31, 2017
    Assignees: Guardian Glass, LLC, Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventors: Marcus Frank, Anton Dietrich, Greg Miller, Richard Blacker, Muhammad Imran, Jean-Marc Lemmer
  • Patent number: 9751801
    Abstract: Certain example embodiments relate to a coated article including at least one infrared (IR) reflecting layer of a material such as silver or the like in a low-E coating, and methods of making the same. In certain cases, at least one layer of the coating is of or includes nickel and/or titanium (e.g., NixTiyOz). The provision of a layer including nickel titanium and/or an oxide thereof may permit a layer to be used that has good adhesion to the IR reflecting layer, and reduced absorption of visible light (resulting in a coated article with a higher visible transmission). When a layer including nickel titanium oxide is provided directly over and/or under the IR reflecting layer (e.g., as a barrier layer), this may result in improved chemical and mechanical durability. Thus, visible transmission may be improved if desired, without compromising durability; or, durability may simply be increased.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: September 5, 2017
    Assignees: Guardian Glass, LLC, Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventors: Marcus Frank, Anton Dietrich, Greg Miller, Richard Blacker, Muhammad Imran, Jean-Marc Lemmer
  • Patent number: 9738561
    Abstract: A coated article is provided with at least one infrared (IR) reflecting layer. The IR reflecting layer may be of silver or the like. In certain example embodiments, a titanium oxide layer is provided over the IR reflecting layer, and it has been found that this surprisingly results in an IR reflecting layer with a lower specific resistivity (SR) thereby permitting thermal properties of the coated article to be improved.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: August 22, 2017
    Assignees: Centre Luxembourgeois de Recherches Pour le Verre et la Ceramique S.A. (C.R.V.C.), Guardian Industries Corp.
    Inventors: Jochen Butz, Uwe Kriltz, Artur Siwek, Anton Dietrich, Jens-Peter Müller, Jean-Marc Lemmer, Richard Blacker
  • Patent number: 9573845
    Abstract: Certain example embodiments of this invention relate to articles including anticondensation and/or low-E coatings that are exposed to an external environment, and/or methods of making the same. In certain example embodiments, the anticondensation and/or low-E coatings may be survivable in an outside environment. The coatings also may have a sufficiently low sheet resistance and hemispherical emissivity such that the glass surface is more likely to retain heat from the interior area, thereby reducing (and sometimes completely eliminating) the presence condensation thereon. The articles of certain example embodiments may be, for example, skylights, vehicle windows or windshields, IG units, VIG units, refrigerator/freezer doors, and/or the like.
    Type: Grant
    Filed: October 23, 2015
    Date of Patent: February 21, 2017
    Assignees: Guardian Industries Corp., Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventors: Jean-Marc Lemmer, Nestor P. Murphy, David D. McLean, Richard Blacker, Herbert Lage, Jose Ferreira, Pierre Pallotta
  • Patent number: 9403345
    Abstract: An IG window unit includes a coating supported by a glass substrate. The coating includes at least the following: a dielectric layer comprising silicon nitride; a dielectric layer comprising an oxide of titanium; another dielectric layer; a layer comprising zinc oxide; an infrared (IR) reflecting layer comprising silver on the glass substrate, located over and directly contacting the layer comprising zinc oxide, wherein the coating includes only one IR reflecting layer; and an overcoat comprising (i) a layer comprising tin oxide and (ii) a layer comprising silicon nitride located over and contacting the layer comprising tin oxide. The IG unit may have an SHGC value of at least 0.65, a visible transmission of at least 70%, and/or an Energy Rating of at least 25.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: August 2, 2016
    Assignees: Guardian Industries Corp., Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventors: Jingyu Lao, Philip J. Lingle, Brent Boyce, Bernd Disteldorf, Richard Blacker
  • Patent number: 9403717
    Abstract: A coated article is provided, having a coating supported by a glass substrate where the coating includes at least one color and/or reflectivity-adjusting absorber layer. The absorber layer(s) allows color tuning, and reduces the glass side reflection of the coated article and/or allows sheet resistance of the coating to be reduced without degrading glass side reflection. In certain example embodiments the absorber layer is provided between first and second dielectric layers which may be of substantially the same material and/or composition. In certain example embodiments, the coated article is capable of achieving desirable transmission, together with desired color, low reflectivity, and low selectivity, when having only one infrared (IR) reflecting layer of silver and/or gold. Coated articles according to certain example embodiments of this invention may be used in the context of insulating glass (IG) window units, monolithic windows, or the like.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: August 2, 2016
    Assignees: Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.), Guardian Industries Corp.
    Inventors: Hartmut Knoll, Jochen Butz, Uwe Kriltz, Bernd Disteldorf, Jose Ferreira, Pierrot Pallotta
  • Patent number: 9394197
    Abstract: A coated article for use in spandrel applications and/or the like is provided. In certain example embodiments, a coating is provided to have a coating design which permits the coating to realize more predictable and/or consistent optical characteristics such as glass side reflectance, color and/or the like. Certain example embodiments of this invention relate to a method of making a coated article for spandrel applications or the like. In certain embodiments, a powder inclusive lacquer coating is used as an overcoat.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: July 19, 2016
    Assignee: Centre Luxembourgeois de Recherches Pour le Verre et la Ceramique S.A.R.L.
    Inventors: Uwe Kriltz, Mario Olbrich, Marion Homuth, Andreas Heft, Andreas Pfuch, Bernd Gruenler
  • Patent number: 9371684
    Abstract: A coated article is provided with at least one infrared (IR) reflecting layer. The IR reflecting layer may be of silver or the like. In certain example embodiments, a titanium oxide layer is provided over the IR reflecting layer, and it has been found that this surprisingly results in an IR reflecting layer with a lower specific resistivity (SR) thereby permitting thermal properties of the coated article to be improved.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: June 21, 2016
    Assignees: Centre Luxembourgeois de Recherches Pour le Verre et la Ceramique S.A. (C.R.V.C.), Guardian Industries Corp.
    Inventors: Jochen Butz, Uwe Kriltz, Artur Siwek, Anton Dietrich, Jens-Peter Muller, Jean-Marc Lemmer, Richard Blacker
  • Patent number: 9297197
    Abstract: An IG window unit includes a coating supported by a glass substrate. The coating from the glass substrate outwardly comprising at least the following: a dielectric layer comprising silicon nitride; a dielectric layer comprising an oxide of titanium; another dielectric layer; a layer comprising zinc oxide; an infrared (IR) reflecting layer comprising silver on the glass substrate, located over and directly contacting the layer comprising zinc oxide, wherein the coating includes only one IR reflecting layer; a layer comprising an oxide of Ni and/or Cr located over and directly contacting the IR reflecting layer comprising silver; and an overcoat comprising (i) a layer comprising tin oxide located over the layer comprising the oxide of Ni and/or Cr and (ii) a layer comprising silicon nitride located over and contacting the layer comprising tin oxide.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: March 29, 2016
    Assignees: Guardian Industries Corp., Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventors: Jingyu Lao, Philip J. Lingle, Brent Boyce, Bernd Disteldorf, Richard Blacker
  • Patent number: 9221713
    Abstract: Certain example embodiments of this invention relate to coated articles with low-E coatings having one or more barrier layer systems including multiple dielectric layers, and/or methods of making the same. In certain example embodiments, providing barrier layer systems that each include three or more adjacent dielectric layers advantageously increases layer quality, mechanical durability, corrosion resistance, and/or thermal stability, e.g., by virtue of the increased number of interfaces. These barrier layer systems may be provided above and/or below an infrared (IR) reflecting layer in the low-E coating in different embodiments. Coated articles according to certain example embodiments of this invention may be used in the context of insulating glass (IG) window units, vehicle windows, other types of windows, or in any other suitable application.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: December 29, 2015
    Assignee: Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventors: Herbert Lage, Jose Ferreira, Pierre Pallotta
  • Patent number: 9090504
    Abstract: A coated article is provided with at least one infrared (IR) reflecting layer. The IR reflecting layer may be of silver or the like. In certain example embodiments, a titanium oxide layer is provided over the IR reflecting layer, and it has been found that this surprisingly results in an IR reflecting layer with a lower specific resistivity (SR) thereby permitting thermal properties of the coated article to be improved.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: July 28, 2015
    Assignees: Centre Luxembourgeois de Recherches Pour le Verre et la Ceramique S.A. (C.R.V.C.), Guardian Industries Corp.
    Inventors: Jochen Butz, Uwe Kriltz, Artur Siwek, Anton Dietrich, Jens-Peter Müller, Jean-Marc Lemmer, Richard Blacker
  • Patent number: 9082914
    Abstract: Certain example embodiments of this invention relate to photovoltaic modules that include high contact angle coatings on one or more outermost major surfaces thereof, and/or associated methods. In certain example embodiments, the high contact angle coatings advantageously reduce the likelihood of electrical losses through parasitic leakage of the electrical current caused by moisture on surfaces of the photovoltaic modules, thereby potentially improving the efficiency of the photovoltaic devices. In certain example embodiments, the high contact angle coatings may be nitrides and/or oxides of or including Si, Ti, Ta, TaCr, NiCr, and/or Cr; hydrophobic DLC; and/or polymer-based coatings. The photovoltaic modules may be substrate-type modules or superstrate-type modules in different example embodiments.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: July 14, 2015
    Assignees: Gaurdian Industries Corp., Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventors: Alexey Krasnov, Jochen Butz, Uwe Kriltz
  • Patent number: 9038419
    Abstract: A method of making a heat treated (HT) substantially transparent coated article to be used in shower door applications, window applications, tabletop applications, or any other suitable applications. Certain embodiments relate to a method of making a coated article including heat treating a glass substrate coated with at least layer of or including carbon (e.g., diamond-like carbon (DLC)) and an overlying protective film thereon. The protective film may be of or include both (a) an oxygen blocking or barrier layer, and (b) a release layer of or including zinc oxynitride (e.g., ZnOxNz). Following and/or during heat treatment (e.g., thermal tempering, or the like) the protective film may be entirely or partially removed.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: May 26, 2015
    Assignees: Centre Luxembourgeois de Recherches Pour le Verre et la Ceramique S.A. (C.R.V.C.), Guardian Industries Corp.
    Inventors: Jens-Peter Müller, Vijayen S. Veerasamy
  • Patent number: 9028956
    Abstract: A coated article is provided, having a coating supported by a glass substrate where the coating includes at least one color and/or reflectivity-adjusting absorber layer. The absorber layer(s) allows color tuning, and reduces the glass side reflection of the coated article and/or allows sheet resistance of the coating to be reduced without degrading glass side reflection. In certain example embodiments the absorber layer is provided between first and second dielectric layers which may be of substantially the same material and/or composition. In certain example embodiments, the coated article is capable of achieving desirable transmission, together with desired color, low reflectivity, and low selectivity, when having only one infrared (IR) reflecting layer of silver and/or gold. Coated articles according to certain example embodiments of this invention may be used in the context of insulating glass (IG) window units, monolithic windows, or the like.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: May 12, 2015
    Assignees: Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.), Guardian Industries Corp.
    Inventors: Hartmut Knoll, Jochen Butz, Uwe Kriltz, Bernd Disteldorf, Jose Ferreira, Pierrot Pallotta
  • Patent number: 8945714
    Abstract: Example embodiments of this invention relate to a coated article including an infrared (IR) reflecting layer of a material such as silver or the like, for use in an insulating glass (IG) window unit for example. In certain example embodiments, the coating is a single-silver type coating, and includes an overcoat including an uppermost layer of or including silicon nitride and a layer of or including tin oxide immediately under and contacting the silicon nitride based overcoat. In certain example embodiments, the thicknesses of the silicon nitride based overcoat and the tin oxide based layer are balanced (e.g., substantially equal, or equal plus/minus about 10%). It has surprisingly been found that such balancing results in an improvement in thermal cycling performance and improved mechanical durability. In certain example embodiments, the coating may realize surprisingly good substantially neutral film side reflective coloration, and may achieve an improved visible transmission, SHGC ratio and low U-values.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: February 3, 2015
    Assignees: Guardian Industries Corp., Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventors: Jingyu Lao, Philip J. Lingle, Brent Boyce, Bernd Disteldorft, Richard Blacker
  • Patent number: 8877548
    Abstract: Certain example embodiments relate to organic light emitting diode (OLED)/polymer light emitting diode (PLED) devices, and/or methods of making the same. A first transparent conductive coating (TCC) layer is disposed, directly or indirectly, on a glass substrate. An outermost major surface of the TCC layer is planarized by exposing the outermost major surface thereof to an ion beam. Following said planarizing, the first TCC layer has an arithmetic mean value RMS roughness (Ra) of less than 1.5 nm. A hole transporting layer (HTL) and an electron transporting and emitting layer (ETL) are disposed, directly or indirectly, on the planarized outermost major surface of the first TCC layer. A second TCC layer is disposed, directly or indirectly, on the HTL and the ETL. One or both TCC layers may include ITO. The substrate and/or an optional optical out-coupling layer stack system may be planarized using an ion beam.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: November 4, 2014
    Assignees: Guardian Industries Corp., Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventors: Vijayen S. Veerasamy, Jens-Peter Muller, Tukaram K. Hatwar
  • Patent number: 8585225
    Abstract: A reflector (e.g., mirror) for use in a solar collector or the like is provided. In certain example embodiments of this invention, a reflector is made by (a) forming reflective coating on a thin substantially flat glass substrate (the thin glass substrate may or may not be pre-bent prior to the coating being applied thereto), (b) optionally, if the glass substrate in (a) was not prebent, then cold-bending the glass substrate with the reflective coating thereon; and (c) applying a plate or frame member to the thin bent glass substrate with the coating thereon from (a) and/or (b), the plate or frame member (which may be another thicker pre-bent glass sheet, for example) for maintaining the thin glass substrate and coating thereon in a desired bent orientation in a final product which may be used as parabolic trough or dish type reflector in a concentrating solar power apparatus or the like.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: November 19, 2013
    Assignees: Guardian Industries Corp., Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventors: Kevin J. O'Connor, Yei-Ping (Mimi) H. Wang, Duane O. Recker, Robert A. Vandal, Shane Hadfield, Jean-Marc Sol, Greg Brecht