Patents Assigned to Centre Suisse d'Electronique et de
  • Publication number: 20140363217
    Abstract: A method for fabricating a micromechanical part from a substrate in which the part is fabricated by providing a plurality of fasteners between the part and the substrate, the fasteners being sacrificial, characterized in that the fasteners include at least one hinge at the end of each fastener located beside the part, and in that the method includes a step of breaking the sacrificial fasteners. The micromechanical parts employing this type of sacrificial fastener are also described.
    Type: Application
    Filed: December 21, 2012
    Publication date: December 11, 2014
    Applicant: CSEM CENTRE SUISSE D'ELECTRONIQUE ET DE MICROTECH- NIQUE SA-RECHERCHE ET DEVELOPPEMENT
    Inventors: Francois Barrot, Remy Fournier, Laurent Giriens, Simon Henein, Sylvain Jeanneret, Johan Kruis
  • Patent number: 8906470
    Abstract: The present invention relates to a method for producing a microfabricated atomic vapor cell, including a step of forming at least one cavity in a substrate and closing the cavity at one side. The method further includes: —a step of depositing a solution including an alkali metal azide dissolved in at least one of its solvents, —a step of evaporating such solvent for forming a recrystallized alkali metal azide, —a step of decomposing the recrystallized alkali metal azide in an alkali metal and nitrogen, such alkali metal depositing in the cavity of the substrate.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: December 9, 2014
    Assignee: CSEM Centre Suisse d'Electronique et de Microtechnique SA—Recherche et Developpment
    Inventors: Thomas Overstolz, Jacques Haesler, Vladislav Spassov
  • Patent number: 8852508
    Abstract: The present invention discloses a microinjection apparatus (100) for microinjection of substances into individual substances comprising at least one carrier (120, 130) on which at least one sample is immobilizable. In embodiments, the apparatus comprises at drivable support (110) on which at least one carrier is positioned, wherein the support drives the at least one carrier in a closed loop to a respective plurality of stations along the loop. The plurality of stations constitutes at least one sample-substance-providing station (141), at least one sample-substance microinjection station (142) and at least one sample-extraction station (143).
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: October 7, 2014
    Assignee: CSEM Centre Suisse d'Electronique et de Microtechnique SA—Recherche et Developpement
    Inventors: Siegfried Graf, Helmut Knapp
  • Patent number: 8847145
    Abstract: Method for working out the angular position of a rotating element, using at least one light source emitting a light beam in the direction of a fixed sensor and computing elements for processing an output signal of the sensor, includes: arranging the light source with respect to the rotating element and the sensor so as to induce an interaction between the light beam and the sensor which depends on the angular position of the rotating shaft, arranging on the path of the light beam, in a fixed position with respect to the sensor, a perforated mask which presents a repetitive pattern of perforations, detecting shadows generated by the mask on the sensor, processing the output signal of the sensor for determining the position of the shadows on the sensor, and computing the angular position of the rotating element using the position of the shadows.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: September 30, 2014
    Assignee: CSEM Centre Suisse d'Electronique et de Microtechnique SA—Recherche et Developpement
    Inventor: Peter Masa
  • Patent number: 8824032
    Abstract: A security device including a zero order diffractive microstructure buried within a substrate. One or more optical structures, such as microlenses, may be formed on a surface of the substrate. The optical structures modify the optical characteristics of the zero order diffractive microstructure. Various alternatives or additional optical structures and methods of producing the security device are described in additional embodiments.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: September 2, 2014
    Assignee: CSEM Centre Suisse d'Electronique et de Microtechnique S.A.
    Inventors: Marc Schnieper, Alexander Stuck, Harald Walter
  • Patent number: 8823952
    Abstract: Method for determining the position and/or displacement of a mobile element with respect to a fixed frame, includes using a fixed light source emitting a light beam, arranging the source with respect to the mobile element and a sensor to induce an interaction between the beam and sensor, using a concave mirror, integral in movement with the mobile element, for reflecting the beam in direction to the sensor, arranging on the path of the beam a fixed optical mask which presents a two dimensional regular pattern interlaced with an absolute code, detecting and processing the image casted by the mask on the sensor, computing the displacement value of the image on the sensor and using the computed displacement value for computing and providing the position and/or the displacement in at least one direction of the mobile element in dependence of the image's displacement.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: September 2, 2014
    Assignee: CSEM Centre Suisse d'Electronique et de Microtechnique SA—Recherche et Developpement
    Inventor: Peter Masa
  • Patent number: 8816783
    Abstract: A device for an atomic clock, including: a laser source (102) that generates a laser beam; a splitter (101) that makes it possible to divert and allow a portion of the laser beam to pass therethrough in accordance with a predefined percentage; a quarter-wave plate (105) that modifies the linear polarization of the laser beam into circular polarization and vice versa; a gas cell arranged on the circular polarization laser beam; a mirror (107) sending the laser beam back toward the gas cell (106); a first photodetector (108a), and a polarizer (103) arranged between the laser beam outlet and the splitter in order to protect the laser source from the retroreflections emitted by different optical elements constituting the device.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: August 26, 2014
    Assignee: CSEM Centre Suisse d'Electronique et de Microtechnique S.A.
    Inventors: Steve Lecomte, Jacques Haesler
  • Patent number: 8816779
    Abstract: A device for an atomic clock, including: a laser source (102) generating a laser beam; a quarter-wave plate (105) modifying the linear polarization of the laser beam into a circular polarization and vice versa; a gas cell (106) placed on the laser beam having a circular polarization; a mirror (107) sending the laser beam back toward the gas cell; a first photodetector (108a); means (103, 101a, 107) for diverting the reflected beam of the laser source (102), and a second photodetector (109) placed behind the mirror (107), the mirror being semitransparent and allowing a portion of the laser beam to pass therethrough, the second photodetector (109) being used for controlling the optical frequency of the laser and/or for controlling the temperature of the cell (106).
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: August 26, 2014
    Assignee: CSEM Centre Suisse d'Electronique et de Microtechnique S.A.
    Inventors: Steve Lecomte, Jacques Haesler
  • Patent number: 8786853
    Abstract: A spectrometer includes: an entrance aperture, a collimator, intended to produce, from a light source, a collimated input light (5), a plurality of gratings arranged in a 2-D matrix, a plurality of detectors, and an exit aperture.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: July 22, 2014
    Assignee: CSEM Centre Suisse d'Electronique et de Microtechnique SA—Recherche et Developpement
    Inventors: Maurizio Tormen, Stanley Ross, Robert Lockhart
  • Patent number: 8760147
    Abstract: The current invention relates, inter alia, to charge pulse amplitude and time detecting circuits, offering very low amplitude and temporal noise, and overcoming noise performance limits in charge pulse detection circuits according to prior art. Embodiments of the present invention may include a sensing device delivering charge pulses onto a sense node, an active buffer buffering the voltage on the sense node with a low impedance, a recharge device removing signal charge from the sense node, a noise filter connected to the output of the active buffer transmitting signal voltage pulses while attenuating noise from the recharge device. Additional and alternative embodiments are specified and claimed.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: June 24, 2014
    Assignee: CSEM Centre Suisse d'Electronique et de Microtechnique SA—Recherche et Developpement
    Inventors: Christian Lotto, Peter Seitz
  • Patent number: 8698892
    Abstract: A one-dimension position measurement system includes: a first ruler having a first one-dimension binary code si applied thereon, a camera for acquiring a picture of a portion of the code si, the portion having a length of I bits, and some processing elements. Each codeword of length I of the one-dimension code si is unique within the whole code si. A codeword ai is read from the acquired picture, and the processing elements are implemented for computing an absolute position p of the codeword ai of the code si from: (I). An ad-hoc interpolation method is used to obtain a precision way below the distance between two bits of the codewords. The code si may be applied on the ruler by using some geometric primitives, a geometric primitive for encoding a “1” being different from a geometric primitive for encoding a “0”, both having the same horizontal projection. The horizontal projection is then used for fine interpolation, achieving nanometer-scale resolution.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: April 15, 2014
    Assignee: CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Developpement
    Inventors: David Hasler, Peter Masa, Pascal Heim, Edoardo Franzi
  • Patent number: 8680829
    Abstract: A Low-dropout (LDO) voltage regulator (1) includes: —a Ballast Transistor PBaI (3) of the P-channel MOS or Bipolar type, having a gate (34) and a main conduction path (D-S) connected in a path between the input VDD (4) and the output VOUT (5) of the regulator—an Operational Transconductance Amplifier (OTA) (2) being implemented as an adaptative biasing transistor amplifier and having an inverting input coupled to the output VOUT (5) through a voltage divider R1-R2 (61), a non-inverting input coupled to a voltage reference circuit (7) and having an output connected to the gate (34) of the Ballast transistor (3). To stabilize the output (5) and to increase the power supply rejection ratio (PSRR) of the LDO voltage regulator (1), OTA (2) includes a resistance RS, which enables to stabilize the output (5) and to increase the Power Supply Rejection Ratio (PSRR).
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: March 25, 2014
    Assignee: CSEM Centre Suisse d'Electronique et de Microtechnique SA—Recherche et Developpement
    Inventor: Frederic Giroud
  • Publication number: 20140017485
    Abstract: The assembly is made up of: a) a support including a mesoporous coating whose pores have an average diameter dimensioned so as to enable molecules from the family of cyanines to penetrate them, and b) a layer of molecules from the family of cyanines and organized into J-aggregates within the pores of the coating. The assembly moreover includes Quantum Dots located within the same pores as those containing the J-aggregates, the Quantum Dots maintaining J-aggregates structure. A method for producing such an assembly is also described.
    Type: Application
    Filed: July 15, 2013
    Publication date: January 16, 2014
    Applicant: CSEM Centre Suisse d'Electronique et de Microtechnique SA Recherche et Developpement
    Inventors: Bernard WENGER, Emmanuel SCOLAN, Raphael PUGIN, Rolf STEIGER
  • Patent number: 8615202
    Abstract: A frequency synthesizer includes: a first oscillator (1) controlled by a first control device, the first oscillator having a high quality factor that is greater than 300 and produces a first clock signal (2) RF having a fixed frequency, the first control device (30) controlling the frequency of the first controlled oscillator (1) on the basis of a first reference frequency; a second oscillator (3) controlled by a second control device and producing a second clock signal (4); the second control device (31) controlling the frequency of the second controlled oscillator (3) on the basis of a second reference frequency; and an integer frequency divider (5) dividing the frequency of the second clock signal (4) by a variable integer factor N1 and producing a third clock signal (6), the frequency of which is continuously variable by modifying the factor N1 and the control of the second oscillator.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: December 24, 2013
    Assignee: CSEM Centre Suisse d'Electronique et de Microtechnique SA—Recherche et Development
    Inventor: David Ruffieux
  • Patent number: 8585605
    Abstract: The invention provides a method and an apparatus for a continuous non-invasive and non-obstrusive monitoring of blood pressure. The method comprises the steps of: a) measuring the value (PW) of a Pulse Wave parameter, equal to or derived from the Pulse Wave Velocity (PWV) parameter of a segment of the arterial tree of a subject, b) measuring the value (CO) of the Cardiac Output parameter, and c) determining the value (BP) of the blood pressure that satisfies B ? ? P = arg ? ? min BP ? ? d ? ( P ? ? W , ? ( C ? ? O , B ? ? P ) ) , where PW is the value measured in step a), (CO, BP) corresponds to a predicted value of the Pulse Wave parameter computed according to a model of the segment of the arterial tree, the value (CO) of the Cardiac Output parameter measured in step b) and an hypothesized value of the blood pressure.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: November 19, 2013
    Assignee: CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Developpement
    Inventors: Josep Sola I Caros, Hans-Andrea Loeliger
  • Publication number: 20130301131
    Abstract: A security Device comprises a zero order diffractive microstructure (5) buried within a substrate (3). One or more further optical structures, such as microlenses (1), may be formed on a surface (2) of the substrate (3). The further optical structures modify the optical characteristics of the zero order diffractive microstructure (5). Various alternatives or additional optical structures and methods of producing them are described in additional embodiments.
    Type: Application
    Filed: May 13, 2013
    Publication date: November 14, 2013
    Applicant: CSEM Centre Suisse d Electronique et de Microtechnique S.A.
    Inventors: Marc Schnieper, Alexander Stuck, Harald Walter
  • Patent number: 8563916
    Abstract: The present invention discloses a solid-state electric charge sensor (200, 600) comprising at least one signal-readout circuit (205, 605) that comprises a current source (140, 640) and a column line (120, 620). The sensor also comprises at least one charge detector circuit (210, 610) that is operatively coupled with the at least one signal-readout circuit (205, 605). The at least one signal-readout circuit (205, 605) is characterized by further comprising at least one open-loop amplifier (250, 650), the input of which is operatively connectable with the at least one column signal line (220, 620) and with the at least one current source (240, 640); at least one feedback line (230, 630) that is operatively connectable with the output (254, 654) of the at least one open-loop amplifier (250, 650); and operative to selectively form a negative feedback loop; and wherein the open-loop amplifier (250, 650) has an inverting voltage gain.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: October 22, 2013
    Assignee: CSEM Centre Suisse d'Electronique et de Microtechnique SA—Recherche et Developpement
    Inventors: Christian Lotto, Peter Seitz, Simon Neukom
  • Patent number: 8542442
    Abstract: The present invention relates to an isotropic zero-order diffractive color filter, to a method to manufacture an embossing tool and to a method to manufacture such a filter. The zero-order diffractive color filter comprises diffractive microstructures and a wave-guiding layer, wherein the diffractive microstructures possess a short range ordering over at least four times the period of the microstructures, and the diffractive microstructures possess a long range disordering over length scales of more than 100 ?m.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: September 24, 2013
    Assignee: Centre Suisse d'Electronique et de Microtechnique SA—Recherche et Developpement
    Inventors: Nicolas Blondiaux, Mickaël Guillaumee, Raphaël Pugin, Ross Stanley, Alexander Stuck, Harald Walter
  • Publication number: 20130236635
    Abstract: The present invention discloses a smart label to be affixed on or integrated in an object and able to provide an electrical signal indicative of the applied pressure or force and/or the position of the applied pressure or force at a touch point on the object to which the label is affixed. The smart label comprises a layer structure and a detector system, the layer structure comprising of at least a stack of a first, a second and a third layer. The first and third layers comprise a flexible, electrically conductive or semiconductive material and at least two electrodes for connecting the layers to the detector system. The second layer comprises a flexible, deformable and compressible material. The second layer is electrically nonconductive or electrically conductive but less conductive than the first and third layers, wherein the second layer separates the first and third layers.
    Type: Application
    Filed: April 29, 2013
    Publication date: September 12, 2013
    Applicant: Csem Centre Suisse D'electronique Et De Microtechnique Sa - Recherche Et Devel
    Inventor: Csem Centre Suisse D'electronique Et De Microtechniqe Sa - Recherche Et Devel
  • Publication number: 20130206994
    Abstract: A device for the sensitive detection of X-rays comprises a structured scintillator screen optically coupled to a semiconductor image sensor. The scintillator screen comprises individual columnar elements covered with material showing high optical reflection. Each columnar element represents a pixel, and light flashes created by an X-ray photon in a scintillating event exit through a short surface of the columnar element for detection with a semiconductor image sensor. The semiconductor image sensor comprises a multitude of photosensor elements, and one or more of these photosensor elements receives light from a scintillator screen pixel.
    Type: Application
    Filed: February 14, 2013
    Publication date: August 15, 2013
    Applicant: CSEM-Centre Suisse d'Electronique et de Microtechnique SA-Recherche et Developpement
    Inventor: CSEM-Centre Suisse d'Electronique et de Microtechnique SA-Recherche et Developpement