Abstract: A sensor pin coupled to a latch is described herein. The sensor pin includes a sensor pin body including a sensor, a sensor bolt extending from the sensor pin body and having a rod cavity arranged at a non-straight angle with regard to an interface pin cavity, an actuator rod slidably positioned within the rod cavity, and an interface pin slidably positioned within the interface pin cavity and mechanically coupled to the actuator rod such that actuation of the interface pin causes axial movement of the actuator rod toward the sensor. Additionally, actuation of the sensor by the actuator rod triggers transmission of a latch state signal by the sensor.
Abstract: A fastener with a freely translatable collet body, which at least partially translates within an auxiliary structure, and further comprise a captive threaded screw for rotationally engaging with the collet body to transform rotational movement into translational movement through substantial arresting of collet body rotation by way of an anti-rotation means. The screw comprises a free-spin feature that functionally, but not physically, decouples a drive tool from the collet body.
Abstract: Fastener embodiments of the invention comprise a freely translatable collet body, which at least partially translates within an auxiliary structure, and further comprise a captive threaded screw for rotationally engaging with the collet body to transform rotational movement into translational movement through substantial arresting of collet body rotation by way of an anti-rotation means. The screw comprises a free-spin feature that functionally, but not physically, decouples a drive tool from the collet body.
Abstract: A bin latch system. A bin latch mechanism that has been designed with weight, number of components, simplicity of operation and installation as main design drivers. The bin latch utilizes spring loaded rods that are ‘pulled’ to release the locking subassemblies. The rods lock two sets of interlocking housings in place. Due to the nature of the rod actuator, the design is binary in nature and needs both sets of interlocking housings to be secured before the interface handle can go to ‘full close’ position. Additionally, there is no rigging necessary at install. Once the assembly is in secured in place, it is ready to be operated.
Abstract: A ball lock pin is provided to avoids the problem of falling balls via machining the retention ring (previously deformed ring) from the inside of the pin body, thus creating a stable and extremely well controlled surface where the steel balls can rest. The pin body does not need to be deformed, thus eliminates any potential corrosion to build up in the area.