Patents Assigned to CERAM Incorporated
  • Patent number: 5817170
    Abstract: A process for producing a ferroelectric lead zirconate titanate dielectric for a semiconductor device by applying a lead titanate seeding layer to a substrate before applying the lead zirconate titanate film, and a semiconductor device produced in accordance with the process. The lead titanate seeding layer allows the subsequent lead zirconate titanate to be annealed at a significantly lower seeding temperature, to lessen interdiffusion among the films, electrodes and substrate and to lessen thermal stresses.
    Type: Grant
    Filed: August 29, 1994
    Date of Patent: October 6, 1998
    Assignees: Ceram Incorporated, Sharp Kabushiki Kaisha, Virginia Tech Intellectual Properties, Inc.
    Inventors: Seshu B. Desu, Chi Kong Kwok
  • Patent number: 5550849
    Abstract: A method and system for detecting and correcting all single bit errors in a data word, for detecting all 2-bit errors regardless of whether the two bits in error are consecutive, and for detecting all consecutive 3-bit and 4-bit errors regardless of whether the three bits or four bits are in a single byte. In a preferred embodiment, a set of check bits are established for the data word by exclusively ORing a set of data bits that are unique to each check bit, storing the data bits and check bits, retrieving the data bits, generating a new set of check bits from the retrieved data bits, and comparing the new set of check bits against the old set to establish a syndrome pattern which may be expressed as a hexadecimal for comparison with hexadecimals previously assigned to the data bits.
    Type: Grant
    Filed: May 20, 1993
    Date of Patent: August 27, 1996
    Assignee: Ceram Incorporated
    Inventor: Gary L. Harrington
  • Patent number: 5527567
    Abstract: A method of fabricating high quality layered structure oxide ferroelectric thin films. The deposition process is a chemical vapor deposition process involving chemical reaction between volatile metal organic compounds of various elements comprising the layered structure material to be deposited, with other gases in a reactor, to produce a nonvolatile solid that deposits on a suitably placed substrate such as a conducting, semiconducting, insulating, or complex integrated circuit substrate. The source materials for this process may include organometallic compounds such as alkyls, alkoxides, .beta.-diketonates or metallocenes of each individual element comprising the layered structure material to be deposited and oxygen. Preferably, the reactor in which the deposition is done is either a hot wall or a cold wall reactor and the vapors are introduced into this reactor either through a set of bubblers or through a direct liquid injection system.
    Type: Grant
    Filed: May 30, 1995
    Date of Patent: June 18, 1996
    Assignees: Ceram Incorporated, Sharp Kabushiki Kaisha, Virginia Tech Intellectual Properties, Inc
    Inventors: Seshu B. Desu, Wei Tao, Chien H. Peng, Tingkai Li, Yongfei Zhu
  • Patent number: 5496437
    Abstract: A method of reactive ion etching both a lead zirconate titanate ferroelectric dielectric and a RuO.sub.2 electrode, and a semiconductor device produced in accordance with such process. The dielectric and electrode are etched in an etching gas of O.sub.2 mixed with either CClF.sub.2 or CHClFCF.sub.3.
    Type: Grant
    Filed: June 10, 1993
    Date of Patent: March 5, 1996
    Assignees: Ceram Incorporated, Sharp Kabushiki Kaisha, Virginia Tech Intellectual Properties, Inc.
    Inventors: Seshu B. Desu, Wei Pan, Dilip P. Vijay
  • Patent number: 5491102
    Abstract: A ferroelectric device is constructed using a bottom electrode composed of a conducting oxide such as RuO.sub.x, on a substrate such as silicon or silicon dioxide. A ferroelectric material such as lead zirconate titanate (PZT) is deposited on the bottom electrode, and a conducting interlayer is formed at the interface between the ferroelectric and the electrode. This interlayer is created by reaction between the materials of the ferroelectric and electrode, and in this case would be Pb.sub.2 Ru.sub.2 O.sub.7-x. A conductive top layer is deposited over the ferroelectric. This top layer may be a metal, or it may be the same type of materials as the bottom electrode, in which case another interlayer can be formed at the interface. A device constructed in this manner has the property of lower degradation due to fatigue, breakdown, and aging.
    Type: Grant
    Filed: August 10, 1993
    Date of Patent: February 13, 1996
    Assignees: Ceram Incorporated, Sharp Kabushiki Kaisha, Virginia Polytechnic Institute and State University
    Inventors: Seshu B. Desu, In K. Yoo, Chi K. Kwok, Dilip P. Vijay
  • Patent number: 5478610
    Abstract: A method of fabricating high quality layered structure oxide ferroelectric thin films. The deposition process is a chemical vapor deposition process involving chemical reaction between volatile metal organic compounds of various elements comprising the layered structure material to be deposited, with other gases in a reactor, to produce a nonvolatile solid that deposits on a suitably placed substrate such as a conducting, semiconducting, insulating, or complex integrated circuit substrate. The source materials for this process may include organometallic compounds such as alkyls, alkoxides, .beta.-diketonates or metallocenes of each individual element comprising the layered structure material to be deposited and oxygen. Preferably, the reactor in which the deposition is done is either a hot wall or a cold wall reactor and the vapors are introduced into this reactor either through a set of bubblers or through a direct liquid injection system.
    Type: Grant
    Filed: September 2, 1994
    Date of Patent: December 26, 1995
    Assignees: Ceram Incorporated, Sharp Kabushiki, Virginia Polytechnic Institute and State University
    Inventors: Seshu B. Desu, W. Tao
  • Patent number: 5473326
    Abstract: A data compression and decompression method and apparatus utilizing a sliding window dictionary in combination with an adaptive dictionary. Incoming data moves through a buffer and is compared against both the sliding window dictionary and the adaptive dictionary, and matched data is replaced with a pointer to the dictionary entry. All incoming data is entered into the sliding window dictionary, but only data which satisfies certain criteria is entered into the adaptive dictionary.
    Type: Grant
    Filed: November 5, 1992
    Date of Patent: December 5, 1995
    Assignee: CERAM Incorporated
    Inventors: Gary L. Harrington, Thomas M. Mnich, William D. Miller
  • Patent number: 5382320
    Abstract: A method of reactive ion etching both a lead zirconate titanate ferroelectric dielectric and a RuO.sub.2 electrode, and a semiconductor device produced in accordance with such process. The dielectric and electrode are etched in an etching gas of O.sub.2 mixed with either CHCl.sub.2 CF.sub.3 or CHClFCF.sub.3.
    Type: Grant
    Filed: July 22, 1993
    Date of Patent: January 17, 1995
    Assignees: CERAM Incorporated, Sharp Kabushiki Kaisha, Virginia Polytechnic Institute and State University
    Inventors: Seshu B. Desu, Wei Pan