Patents Assigned to Ceramatec, Inc.
  • Patent number: 8262872
    Abstract: Electrochemical apparatus and processes for the point-of-use production of cleansing, sanitizing, and antimicrobial agents, such as sodium hypochlorite (NaOCl) or hypochlorous acid (HOCl). The processes may be used to produce NaOCl from seawater, low purity un-softened or NaCl-based salt solutions. HOCl may be produced from HCl solutions and water. NaOCl is produced using a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. HOCl is produced using an anion conductive membrane in an electrolytic cell. The cleansing, sanitizing, and antimicrobial agent may be generated on demand and used in household, industrial, and water treatment applications.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: September 11, 2012
    Assignee: Ceramatec, Inc.
    Inventors: Ashok V. Joshi, Shekar Balagopal
  • Patent number: 8257563
    Abstract: An apparatus to produce high purity hydrogen and electricity is disclosed in one embodiment of the invention as including a fuel cell configured to convert the chemical energy of a fuel to electricity and heat. An electrolyzer cell is placed in electrical and thermal communication with the fuel cell and is configured to electrolyze an oxygen-containing compound, such as steam or carbon dioxide, using the electricity and heat generated by the fuel cell. In selected embodiments, the fuel cell and electrolyzer cell are physically integrated into a single electrochemical cell stack.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: September 4, 2012
    Assignee: Ceramatec, Inc.
    Inventor: Joseph J. Hartvigsen
  • Patent number: 8251016
    Abstract: An animal litter composition including geopolymerized ash particulates having a network of repeating aluminum-silicon units is described herein. Generally, the animal litter is made from a quantity of a pozzolanic ash mixed with a sufficient quantity of water and an alkaline activator to initiate a geopolymerization reaction that forms geopolymerized ash. After the geopolymerized ash is formed, it is dried, broken into particulates, and sieved to a desired size. These geopolymerized ash particulates are used to make a non-clumping or clumping animal litter. Odor control is accomplished with the addition of a urease inhibitor, pH buffer, an odor eliminating agent, and/or fragrance.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: August 28, 2012
    Assignee: Ceramatec, Inc.
    Inventors: Chett Boxley, Jessica McKelvie
  • Patent number: 8247585
    Abstract: Systems and methods for using carbon dioxide to remove an alkali catalyst and to recover free carboxylic acids after a transesterification reaction are disclosed. Generally, the methods include first providing a mixture resulting from the transesterification of an ester, wherein the mixture includes substances selected from the alkali catalyst, an alcohol, and a transesterification reaction product such as biodiesel. Second, the methods generally include adding carbon dioxide to the mixture. In some cases, adding the carbon dioxide to the mixture causes the alkali catalyst to convert into an alkali carbonate and/or an alkali bicarbonate. In other cases, adding the carbon dioxide to the mixture causes the carboxylic acid alkali salt to convert into a free carboxylic acid. In either case, the alkali carbonate, the alkali bicarbonate, and/or the free carboxylic acid can be separated from the mixture in any suitable manner.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: August 21, 2012
    Assignee: Ceramatec, Inc
    Inventors: Justin Pendleton, Sai Bhavaraju, Kean Duffey
  • Patent number: 8246863
    Abstract: Metal ion conducting ceramic materials are disclosed having characteristics of high ion conductivity for certain alkali and monovalent metal ions at low temperatures, high selectivity for the metal ions, good current efficiency and stability in water and corrosive media under static and electrochemical conditions. The metal ion conducting ceramic materials are fabricated to be deficient in the metal ion. One general formulation of the metal ion conducting ceramic materials is Me1+x+y?zMIIIyMIV2?ySixP3?xO12?z/2, wherein Me is Na+, Li+, K+, Rb+, Cs+, Ag+, or mixtures thereof, 2.0?x?2.4, 0.0?y?1.0, and 0.05?z?0.9, where MIII is Al3+, Ga3+, Cr3+, Sc3+, Fe3+, In3+, Yb3+, Y3+, or mixtures thereof and MIV is Ti4+, Zr4+, Hf4+, or mixtures thereof.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: August 21, 2012
    Assignee: Ceramatec, Inc.
    Inventors: Shekar Balagopal, Marc Flinders
  • Patent number: 8216722
    Abstract: An alkali-metal-ion battery is disclosed in one embodiment of the invention as including an anode containing an alkali metal, a cathode, and an electrolyte separator for conducting alkali metal ions between the anode and the cathode. In selected embodiments, the electrolyte separator includes a first phase comprising poly(alkylene oxide) and an alkali-metal salt in a molar ratio of less than 10:1. The electrolyte separator may further include a second phase comprising ionically conductive particles that are conductive to the alkali metal ions. These ionically conductive particles may include ionically conductive ceramic particles, glass particles, glass-ceramic particles, or mixtures thereof.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: July 10, 2012
    Assignee: Ceramatec, Inc.
    Inventor: John Howard Gordon
  • Patent number: 8177906
    Abstract: A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: May 15, 2012
    Assignee: Ceramatec, Inc.
    Inventor: Chett Boxley
  • Patent number: 8172940
    Abstract: A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: May 8, 2012
    Assignee: Ceramatec, Inc.
    Inventors: Chett Boxley, Akash Akash, Qiang Zhao
  • Patent number: 8162873
    Abstract: An apparatus for administering a therapeutic agent is provided. The apparatus, in an embodiment, includes an ozone generator connected to a scavenger and an ozone administrator via network of tubing and valves. When activated and the valves placed in the proper position, the ozone generator will fill the ozone administrator with ozone. The ozone generator can then be turned off and the valves moved so that the administrator can be disconnected from the remainder of the apparatus. The administrator is typically in the form of a syringe and needle. Once the syringe and needle is filled with ozone, the needle can be inserted into a tissue and the ozone expressed therefrom into the tissue. Various other apparatuses and methods are also contemplated.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: April 24, 2012
    Assignee: Ceramatec, Inc.
    Inventors: Mario Muto, Kieran P. Murphy
  • Patent number: 8159192
    Abstract: A method for charging a nickel-metal hydride storage battery comprising a positive electrode containing nickel hydroxide, a negative electrode containing a hydrogen absorbing alloy, an alkaline electrolyte, and an alkali conducting separator provided between the positive electrode and the negative electrode. The alkali conducting separator may be a solid alkali metal ion super ion conducting material, wherein the alkali metal is Na, K, or Li.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: April 17, 2012
    Assignee: Ceramatec, Inc.
    Inventors: Ashok V. Joshi, John Howard Gordon, Sai Bhavaraju, John Joseph Watkins
  • Patent number: 8153855
    Abstract: The object is to rapidly clean-up an off-gas generated by blasting in a pressure vessel to such a level as to permit the exhaust of the off-gas. An object to be blasted is blasted in a pressure vessel to generate an off-gas, which is introduced into a combustion furnace to burning a combustible component contained in the off-gas. The off-gas after the burning in a reservoir section is stored in the reservoir section, and exhausted out of the reservoir section if a component contained in the off-gas complies a predetermined emission requirement, otherwise returned to at least one of the pressure vessel and the combustion furnace to be re-treated if the component does not comply the emission requirement.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: April 10, 2012
    Assignees: Kobe Steel, Ltd., Ceramatec, Inc.
    Inventors: Kiyoshi Asahina, Masato Katayama, Ryusuke Kitamura, Joseph J. Hartvigsen, Singaravelu Elangovan
  • Patent number: 8088270
    Abstract: Alkali metals and sulfur may be recovered from alkali polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte solution includes an alkali polysulfide and a solvent that dissolves elemental sulfur. A catholyte solution includes alkali metal ions and a catholyte solvent. Applying an electric current oxidizes sulfur in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Sulfur is recovered by removing and cooling a portion of the anolyte solution to precipitate solid phase sulfur. Operating the cell at low temperature causes elemental alkali metal to plate onto the cathode. The cathode may be removed to recover the alkali metal in batch mode or configured as a flexible band to continuously loop outside the catholyte compartment to remove the alkali metal.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: January 3, 2012
    Assignee: Ceramatec, Inc.
    Inventors: John Howard Gordon, Ashok V. Joshi
  • Patent number: 8075746
    Abstract: A method is provided for synthesizing synthesis gas from carbon dioxide obtained from atmospheric air or other available carbon dioxide source and water using a sodium-conducting electrochemical cell. Synthesis gas is also produced by the coelectrolysis of carbon dioxide and steam in a solid oxide fuel cell or solid oxide electrolytic cell. The synthesis gas produced may then be further processed and eventually converted into a liquid fuel suitable for transportation or other applications.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: December 13, 2011
    Assignee: Ceramatec, Inc.
    Inventors: Joseph J. Hartvigsen, Ashok V. Joshi, S. Elangovan, Shekar Balagopal, John Howard Gordon, Michele Hollist
  • Patent number: 8075758
    Abstract: Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: December 13, 2011
    Assignee: Ceramatec, Inc.
    Inventors: Ashok V. Joshi, Shekar Balagopal, Justin Pendelton
  • Patent number: 8071495
    Abstract: A densified silicon nitride body can be formed using a lanthana-based sintering aid. The composition may exhibit properties that provide a material useful in a variety of applications that can benefit from improved wear characteristics. The composition may be densified by sintering and hot isostatic pressing.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: December 6, 2011
    Assignee: Ceramatec, Inc.
    Inventors: Vimal K. Pujari, William T. Collins
  • Patent number: 8066659
    Abstract: An apparatus for administering a therapeutic is provided. In various embodiments, the apparatus includes a syringe having a barrel and a plunger and having a material treatment module associated therewith. The material treatment module may be an ozone generator that is initiated such that material containing ozone accumulates within the barrel. The material can then be delivered from the barrel into a target site via a needle, thereby delivering therapeutic effects to that target site.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: November 29, 2011
    Assignee: Ceramatec, Inc.
    Inventors: Ashok V. Joshi, James Steppan, Jesse Nachlas, Thomas A. Meaders, Kieran P. Murphy
  • Patent number: 8066695
    Abstract: An apparatus for administering a therapeutic agent is provided. The apparatus, in an embodiment, includes an ozone generator connected to a scavenger and an ozone administrator via network of tubing and valves. When activated and the valves placed in the proper position, the ozone generator will fill the ozone administrator with ozone. The ozone generator can then be turned off and the valves moved so that the administrator can be disconnected from the remainder of the apparatus. The administrator is typically in the form of a syringe and needle. Once the syringe and needle is filled with ozone, the needle can be inserted into a tissue and the ozone expressed therefrom into the tissue. Various other apparatuses and methods are also contemplated.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: November 29, 2011
    Assignee: Ceramatec, Inc.
    Inventors: Mario Muto, Kieran P. Murphy
  • Patent number: 8038789
    Abstract: A process for making a pervious concrete comprising a geopolymerized pozzolanic ash. Generally, the process includes mixing a solid aggregate and a geopolymerized pozzolanic ash binder together to form a pervious concrete mixture. Some examples of suitable aggregates comprise recycled carpet, recycled cement, and aggregates of coal-combustion byproducts. The geopolymerized pozzolanic ash binder is made by combining a pozzolanic ash, such as fly ash, with a sufficient amount of an alkaline activator and water to initiate a geopolymerization reaction. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof. In some aspects, the final concrete forms a solid mass in the form of pavement or a pre-cast concrete shape. The solid mass of concrete may have a void content of between about 5% and about 35%.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: October 18, 2011
    Assignee: Ceramatec, Inc.
    Inventor: Chett Boxley
  • Patent number: 8012380
    Abstract: A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: September 6, 2011
    Assignee: Ceramatec, Inc.
    Inventors: S. Elangovan, Balakrishnan G. Nair, Troy Small, Brian Heck
  • Patent number: 8012633
    Abstract: A metal-air battery is disclosed in one embodiment of the invention as including a cathode to reduce oxygen molecules and an alkali-metal-containing anode to oxidize the alkali metal (e.g., Li, Na, and K) contained therein to produce alkali-metal ions. An aqueous catholyte is placed in ionic communication with the cathode to store reaction products generated by reacting the alkali-metal ions with the oxygen containing anions. These reaction products are stored as solutes dissolved in the aqueous catholyte. An ion-selective membrane is interposed between the alkali-metal containing anode and the aqueous catholyte. The ion-selective membrane is designed to be conductive to the alkali-metal ions while being impermeable to the aqueous catholyte.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: September 6, 2011
    Assignee: Ceramatec, Inc.
    Inventors: John Howard Gordon, Shekar Balagopal, Sai Bhavaraju, John Joseph Watkins