Patents Assigned to CERION TECHNOLOGY, INC.
  • Patent number: 8883865
    Abstract: A process for making cerium-containing oxide nanoparticles includes providing an aqueous reaction mixture containing a source of cerous ion, optionally a source of one or more metal ions (M) other than cerium, a source of hydroxide ion, at least one monoether carboxylic acid nanoparticle stabilizer wherein the molar ratio of said monoether carboxylic acid nanoparticle stabilizers to total metal ions is greater than 0.2, and an oxidant at an initial temperature in the range of about 20° C. to about 95° C. Temperature conditions are provided effective to enable oxidation of cerous ion to ceric ion, thereby forming a product dispersion of cerium-containing oxide nanoparticles, optionally containing one or more metal ions (M), Ce1-xMxO2-?, wherein “x” has a value from about 0.0 to about 0.95. The nanoparticles may have a mean hydrodynamic diameter from about 1 nm to about 50 nm, and a geometric diameter of less than about 45 nm.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: November 11, 2014
    Assignee: Cerion Technology, Inc.
    Inventors: Albert Gary DiFrancesco, Richard K. Hailstone, Kenneth J. Reed, Gary R. Prok
  • Patent number: 8679344
    Abstract: A process for replacing the continuous phase of a nanoparticle dispersion with a less polar phase, includes filtering the dispersion through a semi-permeable membrane filter to remove the continuous phase, and introducing a less polar phase.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: March 25, 2014
    Assignee: Cerion Technology, Inc.
    Inventors: Thomas D. Allston, Laura M. Herder, Andreas Langner, Kenneth J. Reed
  • Publication number: 20130230444
    Abstract: A method of improving the efficiency of a diesel engine provided with a source of diesel fuel includes the steps of: a) adding to the diesel fuel a reverse-micellar composition having an aqueous first disperse phase that includes a free radical initiator and a first continuous phase that includes a first hydrocarbon liquid, a first surfactant, and optionally a co-surfactant, thereby producing a modified diesel fuel, and b) operating the engine, thereby combusting the modified diesel fuel. The efficiency of a diesel engine provided with a source of diesel fuel and a source of lubricating oil can also be improved by modifying the lubricating oil by the addition of a stabilized nanoparticulate composition of cerium dioxide. The efficiency of a diesel engine can also be improved by adding to the diesel fuel a reverse-micellar composition that includes an aqueous disperse phase containing boric acid or a borate salt.
    Type: Application
    Filed: April 18, 2013
    Publication date: September 5, 2013
    Applicant: Cerion Technology, Inc.
    Inventor: Kenneth Reed
  • Publication number: 20130192122
    Abstract: Improved methods for producing colloidal dispersions of cerium-containing oxide nanoparticles in substantially non-polar solvents is disclosed. The cerium-containing oxide nanoparticles of an aqueous colloid are transferred to a substantially non-polar liquid comprising one or more amphiphilic materials, one or more low-polarity solvents, and, optionally, one or more glycol ether promoter materials. The transfer is achieved by mixing the aqueous and substantially non-polar materials, forming an emulsion, followed by a phase separation into a remnant polar solution phase and a substantially non-polar organic colloid phase. The organic colloid phase is then collected. The promoter functions to speed the transfer of nanoparticles to the low-polarity phase. The promoter accelerates the phase separation, and also provides improved colloidal stability of the final substantially non-polar colloidal dispersion.
    Type: Application
    Filed: February 1, 2013
    Publication date: August 1, 2013
    Applicant: Cerion Technology, Inc.
    Inventor: Cerion Technology, Inc.
  • Publication number: 20130197107
    Abstract: An improved process for producing substantially non-polar doped or un-doped cerium oxide nanoparticle dispersions is disclosed. The cerium-containing oxide nanoparticles of an aqueous colloid are transferred to a substantially non-polar liquid comprising one or more amphiphilic materials, one or more low-polarity solvents, and one or more glycol ether promoter materials. The transfer is achieved by mixing the aqueous and substantially non-polar materials, forming an emulsion, followed by a phase separation into a remnant polar solution phase and a substantially non-polar organic colloid phase. The organic colloid phase is then collected. The promoter functions to speed the transfer of nanoparticles to the low-polarity phase. The promoter accelerates the phase separation, and also provides improved colloidal stability of the final substantially non-polar colloidal dispersion.
    Type: Application
    Filed: January 30, 2013
    Publication date: August 1, 2013
    Applicant: Cerion Technology, Inc.
    Inventor: Cerion Technology, Inc.
  • Publication number: 20130118060
    Abstract: A fuel additive composition includes: a) a reverse-micellar composition having an aqueous disperse phase that includes cerium dioxide nanoparticles in a continuous phase that includes a hydrocarbon liquid, a surfactant, and optionally a co-surfactant and b) a reverse micellar composition having an aqueous disperse phase that includes a cetane improver effective for improving engine power during fuel combustion. A method of making a cerium-containing fuel additive includes the step of: a) providing a mixture of a nonpolar solvent, a surfactant, and a co-surfactant; and b) combining the mixture with an aqueous suspension of stabilized cerium dioxide nanoparticles.
    Type: Application
    Filed: October 28, 2012
    Publication date: May 16, 2013
    Applicant: CERION TECHNOLOGY, INC.
    Inventor: CERION TECHNOLOGY, INC.
  • Publication number: 20130109600
    Abstract: A method of making a structured, doped, cerium oxide nanoparticle includes (a) forming a first reaction mixture including cerium(III), an optional metal ion other than cerium, a base, a stabilizer, and a solvent, (b) contacting the first reaction mixture with an oxidant, (c) forming a cerium oxide nanoparticle core by heating the product of step (b), (d) forming a second reaction mixture by combining with the first reaction mixture one or more metal ions other than cerium, and an optional additional quantity of cerium(III), and (e) forming a shell surrounding the core of cerium oxide by heating the second reaction mixture to produce a product dispersion of structured cerium oxide nanoparticles.
    Type: Application
    Filed: March 8, 2011
    Publication date: May 2, 2013
    Applicant: Cerion Technology, Inc.
    Inventors: Kenneth J. Reed, Albert Gary Difrancisco, Richard K. Hailstone, Gary R. Prok, Thomas D. Allston
  • Publication number: 20130047945
    Abstract: A method of improving the efficiency of a diesel engine provided with a source of diesel fuel includes the steps of: a) adding to the diesel fuel a reverse-micellar composition having an aqueous first disperse phase that includes a free radical initiator and a first continuous phase that includes a first hydrocarbon liquid, a first surfactant, and optionally a co-surfactant, thereby producing a modified diesel fuel; and b) operating the engine, thereby combusting the modified diesel fuel. The efficiency of a diesel engine provided with a source of diesel fuel and a source of lubricating oil can also be improved by modifying the lubricating oil by the addition of a stabilized nanoparticulate composition of cerium dioxide. The efficiency of a diesel engine can also be improved by adding to the diesel fuel a reverse-micellar composition that includes an aqueous disperse phase containing boric acid or a borate salt.
    Type: Application
    Filed: April 11, 2012
    Publication date: February 28, 2013
    Applicant: Cerion Technology, Inc.
    Inventor: KENNETH REED
  • Publication number: 20120117863
    Abstract: A method of making cerium-containing metal oxide nanoparticles in non-polar solvent eliminates the need for solvent shifting steps. The direct synthesis method involves: (a) forming a reaction mixture of a source of cerous ion and a carboxylic acid, and optionally, a hydrocarbon solvent; and optionally further comprises a non-cerous metal ion; (b) heating the reaction mixture to oxidize cerous ion to ceric ion; and (c) recovering a nanoparticle of either cerium oxide or a mixed metal oxide comprising cerium. The cerium-containing oxide nanoparticles thus obtained have cubic fluorite crystal structure and a geometric diameter in the range of about 1 nanometer to about 20 nanometers. Dispersions of cerium-containing oxide nanoparticles prepared by this method can be used as a component of a fuel or lubricant additive.
    Type: Application
    Filed: November 14, 2011
    Publication date: May 17, 2012
    Applicant: CERION TECHNOLOGY INC.
    Inventors: Peter Jerome COWDERY-CORVAN, Lyn Marie Irving, Richard Kenneth Hailstone, Kenneth Joseph Reed, Thomas Dale Allston, Carly Louise Augustyn
  • Publication number: 20110056123
    Abstract: A method of making cerium dioxide nanoparticles includes: a) providing an aqueous reaction mixture having a source of cerous ion, a source of hydroxide ion, a nanoparticle stabilizer, and an oxidant at an initial temperature no higher than about 20° C.; b) mechanically shearing the mixture and causing it to pass through a perforated screen, thereby forming a suspension of cerium hydroxide nanoparticles; and c) raising the initial temperature to achieve oxidation of cerous ion to eerie ion and thereby form cerium dioxide nanoparticles having a mean diameter in the range of about 1 nm to about 15 nm. The cerium dioxide nanoparticles may be formed in a continuous process.
    Type: Application
    Filed: September 4, 2007
    Publication date: March 10, 2011
    Applicant: CERION TECHNOLOGY, INC.
    Inventors: Albert Gary Difrancesco, Richard K. Hailstone, Andreas Langner, Kenneth J. Reed
  • Publication number: 20100242342
    Abstract: A process for making cerium-containing oxide nanoparticles includes providing an aqueous reaction mixture containing a source of cerous ion, optionally a source of one or more metal ions (M) other than cerium, a source of hydroxide ion, at least one monoether carboxylic acid nanoparticle stabilizer wherein the molar ratio of said monoether carboxylic acid nanoparticle stabilizers to total metal ions is greater than 0.2, and an oxidant at an initial temperature in the range of about 20° C. to about 95° C. Temperature conditions are provided effective to enable oxidation of cerous ion to ceric ion, thereby forming a product dispersion of cerium-containing oxide nanoparticles, optionally containing one or more metal ions (M), Ce1-xMxO2-?, wherein “x” has a value from about 0.0 to about 0.95. The nanoparticles may have a mean hydrodynamic diameter from about 1 nm to about 50 nm, and a geometric diameter of less than about 45 nm.
    Type: Application
    Filed: May 13, 2010
    Publication date: September 30, 2010
    Applicant: CERION TECHNOLOGY, INC.
    Inventors: Kenneth Joseph Reed, Albert Gary DiFrancesco, Gary Robert Prok, Richard Kenneth Hailstone
  • Publication number: 20100199547
    Abstract: A fuel additive composition includes: a) a reverse-micellar composition having an aqueous disperse phase that includes cerium dioxide nanoparticles in a continuous phase that includes a hydrocarbon liquid, a surfactant, and optionally a co-surfactant and b) a reverse micellar composition having an aqueous disperse phase that includes a cetane improver effective for improving engine power during fuel combustion. A method of making a cerium-containing fuel additive includes the steps of: a) providing a mixture of a nonpolar solvent, a surfactant, and a co-surfactant; and b) combining the mixture with an aqueous suspension of stabilized cerium dioxide nanoparticles.
    Type: Application
    Filed: September 4, 2007
    Publication date: August 12, 2010
    Applicant: CERION TECHNOLOGY, INC.
    Inventor: Kenneth REED
  • Publication number: 20100152077
    Abstract: A process for replacing the continuous phase of a nanoparticle dispersion with a less polar phase, includes filtering the dispersion through a semi-permeable membrane filter to remove the continuous phase, and introducing a less polar phase.
    Type: Application
    Filed: August 28, 2009
    Publication date: June 17, 2010
    Applicant: Cerion Technology Inc.
    Inventors: Thomas D. Allston, Laura M. Herder, Andreas Langner, Kenneth J. Reed
  • Publication number: 20100088949
    Abstract: A method of Improving the efficiency of a diesel engine provided with a source of diesel fuel includes the steps of: a) adding to the diesel fuel a reverse-micellar composition having an aqueous first disperse phase that includes a free radical initiator and a first continuous phase that includes a first hydrocarbon liquid, a first surfactant, and optionally a co-surfactant, thereby producing a modified diesel fuel; and b) operating the engine, thereby combusting the modified diesel fuel. The efficiency of a diesel engine provided with a source of diesel fuel and a source of lubricating oil can also be improved by modifying the lubricating oil by the addition of a stabilized nanoparticulate composition of cerium dioxide. The efficiency of a diesel engine can also be improved by adding to the diesel fuel a reverse-micellar composition that includes an aqueous disperse phase containing boric acid or a borate salt.
    Type: Application
    Filed: September 4, 2007
    Publication date: April 15, 2010
    Applicant: CERION TECHNOLOGY, INC.
    Inventor: Kenneth Reed
  • Patent number: 5697832
    Abstract: This invention relates to a planetary grinding or polishing machine wherein the outer ring gear, the upper platen, and the lower platen are independently rotatable in the clockwise or counterclockwise directions at variable speeds. Such grinding or polishing is especially useful in high precision finishing of aluminum, nickel plated, and ceramic substrates where uniform and non-uniform surface finishes are required from surface-to-surface in the workpiece.
    Type: Grant
    Filed: October 18, 1995
    Date of Patent: December 16, 1997
    Assignee: Cerion Technologies, Inc.
    Inventors: David Greenlaw, William A. Hughes, Terry Hickman, John Berbaum, Clyde Marchand