Abstract: Methods and devices are configured to maintain a planned arrangement of autonomous underwater vehicles (AUVs). An AUV performs a corrective motion to adjust its current position relative to other AUVs emitting signals, so that the AUV's corrected position matches a planned position of the AUV in the planned arrangement better than its current position. The corrective motion is determined based on the location of the AUVs whose emitted signals are detected by the AUV.
Abstract: System, medium and method for de-blending seismic data. The method for acquiring blended seismic data associated with a subsurface of the earth includes receiving coordinates of a sail line associated with first and second shot point locations; towing first and second source arrays in water along the sail line; shooting the first and second source arrays with a constant delay parameter so that a seismic trace recorded by a seismic sensor has at least a first uncontaminated portion that includes seismic energy generated substantially only by one of the first and second source arrays and a second portion that includes seismic energy generated by both the first and second source arrays; and recording blended seismic data generated by the first and second source arrays with the seismic sensor.
Type:
Grant
Filed:
April 2, 2014
Date of Patent:
April 30, 2019
Assignee:
CGG SERVICES SAS
Inventors:
Thomas Mensch, Helene Tonchia, Gordon Poole
Abstract: Systems and methods for attenuating vibrations in marine seismic equipment involve a vessel towing a seismic streamer having a plurality of seismic receivers. The seismic streamer is connected to the vessel by a front-end and a damper is coupled to the front-end. A vibration on the front-end is detected and a damper response to the detected vibration on the front-end is then determined. The damper is actively adjusted based on the damper response. The active adjustment dampens vibrations in an axial direction along a lead-in of the front-end and/or vibrations in a direction transverse to an axial direction of the lead-in.
Abstract: Method and device for generating an induced source shot point gather. The method includes receiving seismic data at least partially generated by an unintentional seismic source; calculating plural reconstructed receiver traces (RGi) based on pairing traces from the seismic data; and generating the induced source shot point gather based on the plural reconstructed receiver traces (RGi).
Abstract: A computing system and method for mitigating, in a first seismic survey, cross-talk generated by a second seismic survey. The method includes performing the first seismic survey with a first survey seismic source driven by a first survey pilot sweep, performing the second seismic survey with a second survey seismic source, simultaneously with the first seismic survey, recording with first survey seismic sensors (i) first survey seismic signals that originate from the first survey seismic source and (ii) second survey seismic signals that originate from the second survey seismic source, selecting another first survey pilot sweep, which has less cross-correlation noise with the second survey seismic signals than the first survey pilot sweep, and continuing the first seismic survey with the another first survey pilot sweep.
Abstract: A system for immersion cooling computing system equipment includes a container containing a volume of immersion cooling fluid. At least one heat generating computing system equipment component and a liquid-liquid heat exchanger are disposed in the volume of immersion cooling fluid. A manifold system is disposed between the heat generating computing system equipment component and the liquid-liquid heat exchanger to direct a flow of immersion cooling fluid between the heat generating computing system component and the liquid-liquid heat exchanger and to isolate the flow of immersion cooling fluid from a bulk amount of immersion cooling fluid. The flow of immersion cooling fluid and the bulk amount of immersion cooling fluid constitutes the volume of immersion cooling fluid.
Type:
Grant
Filed:
April 18, 2017
Date of Patent:
April 9, 2019
Assignee:
CGG SERVICES SAS
Inventors:
Cemil Ozyalcin, Edward Joseph Barragy, Laurent Clerc
Abstract: A method for survey data processing compensates for visco-acoustic effects in TTI medium in an RTM method. This method employs propagating in conjugate medium to yield correct phase, and acoustic wave propagation to yield correct amplitudes through adaptive matching filtering.
Abstract: An electromagnetic geophysical exploration system includes a first transmitter configured to transmit a first waveform in a first spectrum, a first receiver configured to sense signals in the first spectrum, a second transmitter configured to transmit a second waveform in a second spectrum, the second spectrum having a frequency higher than a frequency of the first spectrum, a second receiver configured to sense signals in the second spectrum, the second receiver configured to be minimum-coupled to the second transmitter, wherein a transmitter coil of the second transmitter is disposed between an inner receiver coil and an outer receiver coil of the second receiver, and the inner receiver coil and the outer receiver coil of the second receiver surround the transmitter coil of the second transmitter, and a control portion configured to control the first transmitter and the second transmitter.
Type:
Grant
Filed:
April 21, 2015
Date of Patent:
March 12, 2019
Assignee:
CGG SERVICES SAS
Inventors:
Adam Smiarowski, Jason Berringer, Philip Miles
Abstract: Controller and method for adapting a frequency sweep for a vibro-acoustic source element that is configured to generate acoustic waves during a seismic survey. The method includes driving a seismic source element to generate a current frequency sweep; recording seismic data with plural seismic sensors in response to the current frequency sweep; selecting, during the seismic survey, a data subset of the seismic data, wherein the data subset has a size less than 10% of the seismic data; calculating with a processing device an attribute based on the data subset; and calculating a new frequency sweep based on the attribute.
Type:
Grant
Filed:
August 8, 2013
Date of Patent:
March 5, 2019
Assignee:
CGG SERVICES SAS
Inventors:
Benoit Teyssandier, Robert Dowle, Laurent Ruet, John Sallas
Abstract: Computing device, computer instructions and method for estimating a broadband wavelet associated with a given seismic data set. The method includes receiving broadband seismic data; constructing and populating a misfit function; calculating the broadband wavelet based on the misfit function and the broadband seismic data; and estimating physical reservoir properties of a surveyed subsurface based on the broadband wavelet. The broadband wavelet is constrained, through the misfit function, by (1) an amplitude only long wavelet, and (2) an amplitude and phase short wavelet. The amplitude and phase short wavelet is shorter in time than the amplitude only long wavelet.
Type:
Grant
Filed:
January 23, 2017
Date of Patent:
March 5, 2019
Assignee:
CGG SERVICES SAS
Inventors:
Shavarsh Nurijanyan, Harry Debeye, Peter Mesdag, Menne Schakel
Abstract: Systems and methods for wireless data acquisition in seismic monitoring systems are disclosed. The method includes obtaining a signal table for an emitted seismic signal, receiving seismic signal data from a receiver configured to transform seismic signals into seismic signal data, and storing the seismic signal data on a storage system. The method also includes determining a time span for the seismic signal data and generating a reduced data set based on the seismic signal data, the signal table, and the time span.
Type:
Grant
Filed:
February 17, 2015
Date of Patent:
February 19, 2019
Assignee:
CGG SERVICES SAS
Inventors:
Eric Forgues, Peter Maxwell, Jason Jurok, Julien Cotton
Abstract: In accordance with some embodiments of the present disclosure, a method for generating composite non-linear sweeps adapted to vibrator constraints includes determining a target amplitude function, determining a constraint set including a constraint, selecting a scaling constant, calculating a low-frequency non-linear sweep based on the constraint set and the scaling constant, calculating a high-frequency non-linear sweep based on the constraint set, the scaling constant, and the low-frequency non-linear sweep, and calculating a composite non-linear sweep by combining the low-frequency non-linear sweep and the high-frequency non-linear sweep.
Abstract: Generating spectrally enhanced seismic data expresses seismic data as a convolution of reflectivity and a seismic source wavelet. This seismic source wavelet varies over a sampling interval and defining a total amount of energy over the sampling interval. An enhanced seismic source wavelet that is a single-valued energy spike that yields the total amount of energy over the sampling interval is generated. In addition, the reflectivity is modified to preserve amplitude variation with angle. The reflectivity is convoluted with the enhanced seismic source wavelet and residual energy is added to the convolution to generate the spectrally enhanced seismic data.
Type:
Grant
Filed:
January 10, 2017
Date of Patent:
January 29, 2019
Assignee:
CGG SERVICES SAS
Inventors:
Can Peng, Arash Jafargandomi, Henning Hoeber, James Cooper, Gordon Poole
Abstract: A method for using an offset vector tile gather to image a subsurface defines an offset vector tile gather by selecting a plurality of seismic traces from recorded seismic data. Each seismic trace in the offset vector tile includes reflections from subsurface reflectors and reflection points at depths below the surface of the subsurface. Each reflection point is in a given seismic trace, and each given seismic trace extends from a seismic source to a seismic receiver. The reflection points define an offset vector tile having a source line span and a receiver line span. The source line span is equal to or greater than a distance between adjacent seismic receiver lines, and the receiver line span is less than a distance between adjacent seismic source lines. The offset vector tile gather is used to produce a three dimensional image of the subsurface.
Abstract: Predicting elastic parameters of a subsurface includes modelling changes in the shear modulus and changes in the bulk modulus of the subsurface as a combination of a host medium shear modulus and host medium bulk modulus and a plurality of inclusion shear moduli and inclusion bulk moduli. Each inclusion shear modulus and inclusion bulk modulus associated with a unique inclusion geometry. An inclusion-based rock physical model is used to solve the models for changes in shear modulus and changes in bulk modulus to predict an effective shear modulus of the subsurface and an effective bulk modulus of the subsurface.
Abstract: Predicting and quantifying free silicon in a geological formation generates free silicon data for a physical sample obtained from within the geological formation. The free silicon data include identification of portions of the physical sample containing free silicon and a quantification of the free silicon contained in the portions of the physical sample containing free silicon. A modified petro-elastic model for the geological formation comprising rock constituents is generated that incorporates free silicon as one of the rock constituents and that quantitatively models how free silicon changes elastic properties within the geological formation. A three-dimensional model of the geological formation is created that indicates volumes of free silicon throughout the geological formation. The three-dimensional model is created using geophysical data obtained from the physical sample, seismic data covering the geological formation and the modified petro-elastic model.
Type:
Grant
Filed:
May 4, 2016
Date of Patent:
January 22, 2019
Assignee:
CGG SERVICES SAS
Inventors:
Guy Oliver, Graham Spence, Chi Vinh Ly, Fabien Allo
Abstract: A marine acoustic source system and method for steering a seismic source array in a body of water during a seismic survey. The method includes measuring an actual position of the seismic source array; calculating a virtual position of the seismic source array, wherein the virtual position corresponds to a position of the seismic source array when towed with no adjustment from a source steering device; retrieving a pre-plot path that includes desired positions of the seismic source array for the seismic survey; and steering the vessel based on the virtual position so that the virtual position lies on the pre-plot path.
Abstract: A method for processing seismic data may include receiving input seismic data (di) comprising N spatial coordinates, where the input seismic data is in a first spatial domain, expanding the N spatial coordinates of the input seismic data (di) to N? modified spatial coordinates, where N? is greater than N, to provide spatially expanded seismic data (de) that is in a second spatial domain, transforming the spatially expanded seismic data (de) to a model domain to provide model domain data (dm), and generating a final image (df) of a subsurface using the model domain data (dm).
Abstract: Method and system for acquiring seismic data. The marine seismic acquisition system includes a first vessel that follows an inline direction (X); a first source array (S1) configured to generate first seismic waves; and a second source array (S2) configured to generate second seismic waves. The first and second source arrays are towed by the first vessel along the inline direction (X) and a first inline distance (d) between (i) a first center of source (CS1) of the first source array (S1) and (ii) a second center of source (CS2) of the second source array (S2) is different from zero.
Abstract: A seismic data acquisition system includes a recording unit to record acquired seismic data and ground equipment containing surface units and wireless field digitizer units. Each surface unit is in communication with the recording unit and contains a first wireless communication module and a power supply mechanism transmitter coil. Each wireless field digitizing unit includes a seismic sensor unit, a second wireless communication module in communication with the seismic sensor unit and one of the first wireless communication modules to exchange digital data between the first and second wireless communication modules and a power supply mechanism receiver coil. The power supply mechanism receiver coil is magnetically coupled to the power supply mechanism transmitter coil in one of the surface units to transmit electrical energy wirelessly from the surface unit to the wireless field digitizer.
Type:
Grant
Filed:
February 4, 2015
Date of Patent:
November 6, 2018
Assignee:
CGG SERVICES SAS
Inventors:
Jason Jurok, Peter Maxwell, Jonathan Grimsdale