Abstract: In one aspect, methods are described herein for enhancing one or more nucleic acid interactions. For example, in some embodiments, methods of enhancing one or more steps of polymerase chain reaction (PCR) are described herein. In some embodiments, the optimal temperature cycling protocol for one or more PCR cycles can be determined according to methods described herein.
Abstract: In one aspect, methods are described herein for enhancing one or more nucleic acid interactions. For example, in some embodiments, methods of enhancing one or more steps of polymerase chain reaction (PCR) are described herein. In some embodiments, the optimal temperature cycling protocol for one or more PCR cycles can be determined according to methods described herein.
Abstract: In one aspect, methods are described herein for enhancing one or more nucleic acid interactions. For example, in some embodiments, methods of enhancing one or more steps of polymerase chain reaction (PCR) are described herein. In some embodiments, the optimal temperature cycling protocol for one or more PCR cycles can be determined according to methods described herein.
Abstract: In one aspect, methods are described herein for enhancing one or more nucleic acid interactions. For example, in some embodiments, methods of enhancing one or more steps of polymerase chain reaction (PCR) are described herein. In some embodiments, the optimal temperature cycling protocol for one or more PCR cycles can be determined according to methods described herein.
Abstract: The instant invention provides workflows for the design and characterization of mechanism-based sirtuin modulating compounds, including new or improved sirtuin activating compounds. Workflows for the design of mechanism-based sirtuin activating compounds are provided, based on conditions that must be satisfied by activators if they are to exploit the common catalytic mechanism of all sirtuin enzymes and hence increase catalytic efficiency for any sirtuin and any substrate.
Abstract: The instant invention provides workflows for the design and characterization of mechanism-based sirtuin modulating compounds, including new or improved sirtuin activating compounds. Workflows for the design of mechanism-based sirtuin activating compounds are provided, based on conditions that must be satisfied by activators if they are to exploit the common catalytic mechanism of all sirtuin enzymes and hence increase catalytic efficiency for any sirtuin and any substrate.
Abstract: In one aspect, methods are described herein for enhancing one or more nucleic acid interactions. For example, in some embodiments, methods of enhancing one or more steps of polymerase chain reaction (PCR) are described herein. In some embodiments, the optimal temperature cycling protocol for one or more PCR cycles can be determined according to methods described herein.