Abstract: The invention refers to a frequency shifter for heterodyne interferometry measurements, comprising a chip, an input waveguide configured to guide a light beam, at least four phase modulators, each being arranged to receive the light beam from the input waveguide and configured to modulate a phase of the light beam, an output combiner being arranged to let the light beams modulated by each phase modulator interfere, a first output waveguide coupled to the output combiner and configured to receive the modulated light beams constructively interfering at the output combiner, a second output waveguide coupled to the output combiner and configured to receive the modulated light beams destructively interfering at the output combiner, wherein the input waveguide, the phase modulators, the output combiner, the first output waveguide and the second output waveguide are arranged on the chip.
Abstract: The invention refers to an optical device for heterodyne interferometry, comprising a chip, a beam splitter, a first waveguide arranged on the chip, light propagating in the first waveguide being guided to the beam splitter, a second waveguide arranged on the chip, light propagating in the second waveguide being guided to and/or from the beam splitter, wherein the beam splitter, the first waveguide, and the second waveguide form part of a Michelson interferometer, wherein the first waveguide and the second waveguide at least partially form two arms of the Michelson interferometer, and wherein two further arms of the Michelson interferometer are at least partially arranged outside the chip.
Type:
Grant
Filed:
December 11, 2020
Date of Patent:
December 31, 2024
Assignee:
CHAMARTIN LABORATORIES LLC
Inventors:
Richard Grote, Jeffrey Driscoll, Alexander Gondarenko
Abstract: A method of manufacturing an optoelectronic device. The manufactured device includes a photonic component coupled to a waveguide. The method comprising: providing a device coupon, the device coupon including the photonic component; providing a silicon platform, the silicon platform comprising a cavity within which is a bonding surface for the device coupon; transfer printing the device coupon onto the cavity, such that a surface of the device coupon directly abuts the bonding surface and at least one channel is present between the device coupon and a sidewall of the cavity; and filling the at least one channel with a filling material via a spin-coating process, to form a bridge coupling the III-V semiconductor based photonic component to the silicon waveguide.